Sec. 8.10 Handling Incoming Datagrams 125

The answer is that hosts not designated to be routers should not route datagrams that
they receive; they should discard them.

There are four reasons why a host not designated to serve as a router should refrain
from performing any router functions. First, when such a host receives a datagram in-
tended for some other machine, something has gone wrong with internet addressing,
routing, or delivery. The problem may not be revealed if the host takes corrective ac-
tion by routing the datagram. Second, routing will cause unnecessary network traffic
(and may steal CPU time from legitimate uses of the host). Third, simple errors can
cause chaos. Suppose that every host routes traffic, and imagine what happens if one
machine accidentally broadcasts a datagram that is destined for some host, H. Because
it has been broadcast, every host on the network receives a copy of the datagram.
Every host forwards its copy to H, which will be bombarded with many copies. Fourth,
as later chapters show, routers do more than merely route traffic. As the next chapter
explains, routers use a special protocol to report errors, while hosts do not (again, to
avoid having multiple error reports bombard a source). Routers also propagate routing
information to ensure that their routing tables are consistent. If hosts route datagrams
without participating fully in all router functions, unexpected anomalies can arise.

8.11 Establishing Routing Tables

We have discussed how IP routes datagrams based on the contents of routing
tables, without saying how systems initialize their routing tables or update them as the
network changes. Later chapters deal with these questions and discuss protocols that al-
low routers to keep routes consistent. For now, it is only important to understand that
IP software uses the routing table whenever it decides how to forward a datagram, so
changing routing tables will change the paths datagrams follow.

8.12 Summary

IP uses routing information to forward datagrams; the computation consists of de-
ciding where to send a datagram based on its destination IP address. Direct delivery is
possible if the destination machine lies on a network to which the sending machine at-
taches; we think of this as the final step in datagram transmission. If the sender cannot
reach the destination directly, the sender must forward the datagram to a router. The
general paradigm is that hosts send indirectly routed datagrams to the nearest router; the
datagrams travel through the internet from router to router until they can be delivered
directly across one physical network.

When IP software looks up a route, the algorithm produces the IP address of the
next machine (i.e., the address of the next hop) to which the datagram should be sent;
IP passes the datagram and next hop address to network interface software. Transmis-
sion of a datagram from one machine to the next always involves encapsulating the da-
tagram in a physical frame, mapping the next hop internet address to a physical address,
and sending the frame using the underlying hardware.

126 Internet Protocol: Routing IP Datagrams Chap. 8

The internet routing algorithm is table driven and uses only IP addresses.
Although it is possible for a routing table to contain a host-specific destination address,
most routing tables contain only network addresses, keeping routing tables small. Us-
ing a default route can also help keep a routing table small, especially for hosts that can
access only one router.

FOR FURTHER STUDY

Routing is an important topic. Frank and Chou [1971] and Schwartz and Stern
[1980] discuss routing in general; Postel [1980] discusses internet routing. Braden and
Postel [RFC 1009] provides a summary of how Internet routers handle IP datagrams.
Narten [1989] contains a survey of Internet routing. Fultz and Kleinrock [1971]
analyzes adaptive routing schemes; and McQuillan, Richer, and Rosen [1980] describes
the ARPANET adaptive routing algorithm.

The idea of using policy statements to formulate rules about routing has been con-
sidered often. Leiner [RFC 1124} considers policies for interconnected networks.
Braun [RFC 1104] discusses models of policy routing for internets, Rekhter [RFC 1092]
relates policy routing to the second NSFNET backbone, and Clark [RFC 1102]
describes using policy routing with IP.

EXERCISES

8.1 Complete routing tables for all routers in Figure 8.2. Which routers will benefit most from
using a default route?

8.2 Examine the routing algorithm used on your local system. Are all the cases mentioned in
the chapter covered? Does the algorithm allow anything not mentioned?

8.3 What does a router do with the time to live value in an IP header?

8.4 Consider a machine with two physical network connections and two IP addresses /, and /,.
Is it possible for that machine to receive a datagram destined for /, over the network with
address /,? Explain.

8.5 Consider two hosts, A and B, that both attach to a common physical network, N. Is it ever
possible, when using our routing algorithm, for A to receive a datagram destined for B?
Explain.

8.6 Modify the routing algorithm to accommodate the IP source route options discussed in
Chapter 7.

8.7 An IP router must perform a computation that takes time proportional to the length of the
datagram header each time it processes a datagram. Explain.

8.8 A network administrator argues that to make monitoring and debugging his local network
easier, he wants to rewrite the routing algorithm so it tests host-specific routes before it
tests for direct delivery. How can he use the revised algorithm to build a network monitor?

8.9
8.10

8.11

8.12

8.13

Exercises 127

Is it possible to address a datagram to a router’s [P address? Does it make sense to do so?
Consider a modified routing algorithm that examines host-specific routes before testing for
delivery on directly connected networks. Under what circumstances might such an algo-
rithm be desirable? undesirable?

Play detective: after monitoring IP traffic on a local area network for 10 minutes one even-
ing, someone notices that all frames destined for machine A carry IP datagrams that have
destination equal to A’s IP address, while all frames destined for machine B carry IP da-
tagrams with destination not equal to B’s IP address. Users report that both A and B can
communicate. Explain.

How could you change the IP datagram format to support high-speed packet switching at
routers? Hint: a router must recompute a header checksum after decrementing the time-to-
live field.

Compare CLNP, the ISO connectionless delivery protocol (ISO standard 8473) with IP.
How well will the ISO protocol support high-speed switching? Hint: variable length fields
are expensive.

9

Internet Protocol: Error And
Control Messages (ICMP)

9.1 Introduction

The previous chapter shows how the Internet Protocol software provides an unreli-
able, connectionless datagram delivery service by arranging for each router to forward
datagrams. A datagram travels from router to router until it reaches one that can deliver
the datagram directly to its final destination. If a router cannot route or deliver a da-
tagram, or if the router detects an unusual condition that affects its ability to forward the
datagram (e.g., network congestion), the router needs to inform the original source to
take action to avoid or correct the problem. This chapter discusses a mechanism that
internet routers and hosts use to communicate such control or error information. We
will see that routers use the mechanism to report problems and hosts use it to test
whether destinations are reachable.

9.2 The Internet Control Message Protocol

In the connectionless system we have described so far, each router operates auto-
nomously, routing or delivering datagrams that arrive without coordinating with the ori-
ginal sender. The system works well if all machines operate correctly and agree on
routes. Unfortunately, no large communication system works correctly all the time.
Besides failures of communication lines and processors, IP fails to deliver datagrams
when the destination machine is temporarily or permanently disconnected from the net-
work, when the time-to-live counter expires, or when intermediate routers become so

129

130 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

congested that they cannot process the incoming traffic. The important difference
between having a single network implemented with dedicated hardware and an internet
implemented with software is that in the former, the designer can add special hardware
to inform attached hosts when problems arise. In an internet, which has no such
hardware mechanism, a sender cannot tell whether a delivery failure resulted from a lo-
cal malfunction or a remote one. Debugging becomes extremely difficult. The IP pro-
tocol itself contains nothing to help the sender test connectivity or learn about such
failures.

To allow routers in an internet to report errors or provide information about unex-
pected circumstances, the designers added a special-purpose message mechanism to the
TCP/IP protocols. The mechanism, known as the Internet Control Message Protocol
(ICMP), is considered a required part of IP and must be included in every IP implemen-
tation.

Like all other traffic, ICMP messages travel across the internet in the data portion
of IP datagrams. The ultimate destination of an ICMP message is not an application
program or user on the destination machine, however, but the Internet Protocol software.
on that machine. That is, when an ICMP error message arrives, the ICMP software
module handles it. Of course, if ICMP determines that a particular higher-level proto-
col or application program has caused a problem, it will inform the appropriate module.
We can summarize:

The Internet Control Message Protocol allows routers to send error
or control messages to other routers or hosts;, ICMP provides com-
munication between the Internet Protocol software on one machine
and the Internet Protocol software on another.

Initially designed to allow routers to report the cause of delivery errors to hosts,
ICMP is not restricted to routers. Although guidelines restrict the use of some ICMP
messages, an arbitrary machine can send an ICMP message to any other machine.
Thus, a host can use ICMP to correspond with a router or another host. The chief ad-
vantage of allowing hosts to use ICMP is that it provides a single mechanism used for
all control and information messages.

9.3 Error Reporting vs. Error Correction

Technically, ICMP is an error reporting mechanism. It provides a way for routers
that encounter an error to report the error to the original source. Although the protocol
specification outlines intended uses of ICMP and suggests possible actions to take in
response to error reports, ICMP does not fully specify the action to be taken for each
possible error. In short,

Sec. 9.3 Error Reporting vs. Error Correction 131

When a datagram causes an error, ICMP can only report the error
condition back to the original source of the datagram; the source
must relate the error to an individual application program or take
other action to correct the problem.

Most errors stem from the original source, but others do not. Because ICMP re-
ports problems to the original source, however, it cannot be used to inform intermediate
routers about problems. For example, suppose a datagram follows a path through a se-
quence of routers, Ri, R, ..., Re. If R« has incorrect routing information and mistakenly
routes the datagram to router Re, Re cannot use ICMP to report the error back to router
Rx; ICMP can only send a report back to the original source. Unfortunately, the original
source has no responsibility for the problem or control over the misbehaving router. In
fact, the source may not be able to determine which router caused the problem.

Why restrict ICMP to communication with the original source? The answer should
be clear from our discussion of datagram formats and routing in the previous chapters.
A datagram only contains fields that specify the original source and the ultimate desti-
nation; it does not contain a complete record of its trip through the internet (except for
unusual cases where the record route option is used). Furthermore, because routers can
establish and change their own routing tables, there is no global knowledge of routes.
Thus, when a datagram reaches a given router, it is impossible to know the path it has
taken to arrive there. If the router detects a problem, it cannot know the set of inter-
mediate machines that processed the datagram, so it cannot inform them of the problem.
Instead of silently discarding the datagram, the router uses ICMP to inform the original
source that a problem has occurred, and trusts that host administrators will cooperate
with network administrators to locate and repair the problem.

9.4 ICMP Message Delivery

ICMP messages require two levels of encapsulation as Figure 9.1 shows. Each
ICMP message travels across the internet in the data portion of an IP datagram, which
itself travels across each physical network in the data portion of a frame. Datagrams
carrying ICMP messages are routed exactly like datagrams carrying information for
users; there is no additional reliability or priority. Thus, error messages themselves may
be lost or discarded. Furthermore, in an already congested network, the error message
may cause additional congestion. An exception is made to the error handling pro-
cedures if an IP datagram carrying an ICMP message causes an error. The exception,
established to avoid the problem of having error messages about error messages, Speci-
fies that ICMP messages are not generated for errors that result from datagrams carrying
ICMP error messages.

132 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

ICMP
HEADER ICMP DATA
DATAGRAM
HEADER DATAGRAM DATA AREA
FRAME
HEADER FRAME DATA AREA

Figure 9.1 Two levels of ICMP encapsulation. The ICMP message is encap-
sulated in an IP datagram, which is further encapsulated in a
frame for transmission. To identify ICMP, the datagram protocol
field contains the value /.

It is important to keep in mind that even though ICMP messages are encapsulated
and sent using IP, ICMP is not considered a higher level protocol — it is a required part
of IP. The reason for using IP to deliver ICMP messages is that they may need to trav-
el across several physical networks to reach their final destination. Thus, they cannot
be delivered by the physical transport alone.

9.5 ICMP Message Format

Although each ICMP message has its own format, they all begin with the same
three fields: an 8-bit integer message TYPE field that identifies the message, an 8-bit
CODE field that provides further information about the message type, and a 16-bit
CHECKSUM field (ICMP uses the same additive checksum algorithm as IP, but the
ICMP checksum only covers the ICMP message). In addition, ICMP messages that re-
port errors always incilude the header and first 64 data bits of the datagram causing the
problem.

The reason for returning more than the datagram header alone is to allow the re-
ceiver to determine more precisely which protocol(s) and which application program
were responsible for the datagram. As we will see later, higher-level protocols in the
TCP/IP suite are designed so that crucial information is encoded in the first 64 bits.

The ICMP TYPE field defines the meaning of the message as well as its format.
The types include:

Sec. 9.5 ICMP Message Format 133

Type Field ICMP Message Type

0 Echo Reply

3 Destination Unreachable

4 Source Quench

5 Redirect (change a route)

8 Echo Request

9 Router Advertisement
10 Router Solicitation
11 Time Exceeded for a Datagram
12 Parameter Problem on a Datagram
13 Timestamp Request
14 Timestamp Reply
15 Information Request (obsolete)
16 Information Reply (obsolete)
17 Address Mask Request
18 Address Mask Reply

The next sections describe each of these messages, giving details of the message format
and its meaning.

9.6 Testing Destination Reachability And Status (Ping)

TCP/IP protocols provide facilities to help network managers or users idefitify net-
work problems. One of the most frequently used debugging tools invokes the ICMP
echo request and echo reply messages. A host or router sends an ICMP echo request
message to a specified destination. Any machine that receives an echo request formu-
lates an echo reply and returns it to the original sender. The request contains an option-
al data area; the reply contains a copy of the data sent in the request. The echo request
and associated reply can be used to test whether a destination is reachable and respond-
ing. Because both the request and reply travel in IP datagrams, successful receipt of a
reply verifies that major pieces of the transport system work. First, IP software on the
source computer must route the datagram. Second, intermediate routers between the
source and destination must be operating and must route the datagram correctly. Third,
the destination machine must be running (at least it must respond to interrupts), and
both ICMP and IP software must be working. Finally, all routers along the return path
must have correct routes.

On many systems, the command users invoke to send ICMP echo requests is
named pingt. Sophisticated versions of ping send a series of ICMP echo requests, cap-
ture responses, and provide statistics about datagram loss. They allow the user to speci-
fy the length of the data being sent and the interval between requests. Less sophisticat-
ed versions merely send one ICMP echo request and await a reply.

tDave Mills once suggested that PING is an acronym for Packet InterNet Groper.

134 Internet Protocol: Error And Control Messages (ICMP) Chap. 9
9.7 Echo Request And Reply Message Format

Figure 9.2 shows the format of echo request and reply messages.

0 8 16 31
TYPE(8or0) | CODE (0) CHECKSUM
IDENTIFIER SEQUENCE NUMBER
OPTIONAL DATA

Figure 9.2 ICMP echo request or reply message format.

The field listed as OPTIONAL DATA is a variable length field that contains data to be
returned to the sender. An echo reply always returns exactly the same data as was re-
ceived in the request. Fields IDENTIFIER and SEQUENCE NUMBER are used by the
sender to match replies to requests. The value of the TYPE field specifies whether the
message is a request (8) or a reply (0).

9.8 Reports Of Unreachable Destinations

When a router cannot forward or deliver an IP datagram, it sends a destination un-
reachable message back to the original source, using the format shown in Figure 9.3.

0 8 16 31
TYPE(3) | CODE (0-12) CHECKSUM
UNUSED (MUST BE ZERO)
INTERNET HEADER + FIRST 64 BITS OF DATAGRAM

Figure 9.3 ICMP destination unreachable message format.

The CODE field in a destination unreachable message contains an integer that further
describes the problem. Possible values are:

Sec. 9.8 Reports Of Unreachable Destinations 135

Code Value Meaning
0 Network unreachable
Host unreachable
Protocol unreachable
Port unreachable
Fragmentation needed and DF set
Source route failed
Destination network unknown
Destination host unknown
Source host isolated
Communication with destination
network administratively prohibited

O©CONOLMPWN=

10 Communication with destination host
administratively prohibited

11 Network unreachable for type of service

12 Host unreachable for type of service

Although IP is a best-effort delivery mechanism, discarding datagrams should not
be taken lightly. Whenever an error prevents a router from routing or delivering a da-
tagram, the router sends a destination unreachable message back to the source and then
drops (i.e.. discards) the datagram. Network unreachable errors usually imply routing
faiiures; host unreachable errors imply delivery failurest. Because the ICMP error mes-
sage contains ~ short prefix of the datagram that caused the problem, the source will
know exactly which address is unreachable.

Destinations may be unreachable because hardware is temporarily out of service,
because the sender specified a nonexistent destination address, or (in rare cir-
cumstances) because the router does not have a route to the destination network. Note
that although routers report failures they encounter, they may not know of all delivery
failures. For example, if the destination machine connects to an Ethernet network, the
network hardware does not provide acknowledgements. Therefore, a router can contin-
ue to send packets to a destination after the destination is powered down without receiv-
ing any indication that the packets are not being delivered. To summarize:

Although a router sends a destination unreachable message when it
encounters a datagram that cannot be forwarded or delivered, a
router cannot detect all such errors.

The meaning of protocol and port unreachable messages will become clear when
we study how higher level protocols use abstract destination points called ports. Most
of the remaining messages are self explanatory. If the datagram contains the source
route option with an incorrect route, it may trigger a source route failure message. If a
router needs to fragment a datagram but the ‘‘don’t fragment’’ bit is set, the router
sends a fragmentation needed message back to the source.

tAn exception occurs for routers using the subnet addressing scheme of Chapter 10. They report a sub-
net routing failure with an ICMP host unreachable message.

136 Internet Protocol: Error And Control Messages (ICMP) Chap. 9
9.9 Congestion And Datagram Flow Control

Because IP is connectionless, a router cannot reserve memory or communication
resources in advance of receiving datagrams. As a result, routers can be overrun with
traffic, a condition known as congestion. It is important to understand that congestion
can arise for two entirely different reasons. First, a high-speed computer may be able to
generate traffic faster than a network can transfer it. For example, imagine a supercom-
puter generating internet traffic. The datagrams may eventually need to cross a slower-
speed wide area network (WAN) even though the supercomputer itself attaches to a
high-speed local area net. Congestion will occur in the router that attaches the LAN to
the WAN because datagrams arrive faster than they can be sent. Second, if many com-
puters simultaneously need to send datagrams through a single router, the router can ex-
perience congestion, even though no single source causes the problem.

When datagrams arrive too quickly for a host or router to process, it enqueues
them in memory temporarily. If the datagrams are part of a small burst, such buffering
solves the problem. If the traffic continues, the host or router eventually exhausts
memory and must discard additional datagrams that arrive. A machine uses ICMP
source quench messages to report congestion to the original source. A source quench
message is a request for the source to reduce its current rate of datagram transmission.
Usually, congested routers send one source quench message for every datagram that
they discard. Routers may also use more sophisticated congestion control techniques.
Some monitor incoming traffic and quench sources that have the highest datagram
transmission rates. Others attempt to avoid congestion altogether by arranging to send
quench requests as their queues start to become long, but before they overflow.

There is no ICMP message to reverse the effect of a source quench. Instead, a host
that receives source quench messages for a destination, D, lowers the rate at which it
sends datagrams to D until it stops receiving source quench messages; it then gradually
increases the rate as long as no further source quench requests are received.

9.10 Source Quench Format

In addition to the usual ICMP TYPE, CODE, CHECKSUM fields, and an unused
32-bit field, source quench messages have a field that contains a datagram prefix. Fig-
ure 9.4 illustrates the format. As with most ICMP messages that report an error, the da-
tagram prefix field contains a prefix of the datagram that triggered the source quench re-
quest.

Sec. 9.10 Source Quench Format 137

0 8 16 31
TYPE(4) | CODE(0) | CHECKSUM
UNUSED (MUST BE ZERO)

INTERNET HEADER + FIRST 64 BITS OF DATAGRAM

Figure 9.4 ICMP source quench message format. A congested router sends
one source quench message each time it discards a datagram; the
datagram prefix identifies the datagram that was dropped.

9.11 Route Change Requests From Routers

Internet routing tables usually remain static over long periods of time. Hosts ini-
tialize them from a configuration file at system startup, and system administrators sel-
dom make routing changes during normal operations. If the network topology changes,
routing tables in a router or host may become incorrect. A change can be temporary
(e.g., when hardware needs to be repaired) or permanent (e.g., when a new network is
added to the internet). As we will see in later chapters, routers exchange routing infor-
mation periodically to accommodate network changes and keep their routes up-to-date.
Thus, as a general rule:

Routers are assumed to know correct routes; hosts begin with minimal
routing information and learn new routes from routers.

To help follow this rule and to avoid duplicating routing information in the confi-
guration file on each host, the initial host route configuration specifies the minimum
possible routing information needed to communicate (e.g., the address of a single
router). Thus, the host begins with minimal information and relies on routers to update
its routing table. In one special case, when a router detects a host using a nonoptimal
route, it sends the host an ICMP message, called a redirect, requesting that the host
change its route. The router also forwards the original datagram on to its destination.

The advantage of the ICMP redirect scheme is simplicity: it allows a host to boot
knowing the address of only one router on the local network. The initial router returns
ICMP redirect messages whenever a host sends a datagram for which there is a better
route. The host routing table remains small but still contains optimal routes for all des-
tinations in use.

Redirect messages do not solve the problem of propagating routes in a general
way, however, because they are limited to interactions between a router and a host on a
directly connected network. Figure 9.5 illustrates the limitation. In the figure, assume
source S sends a datagram to destination D. Assume that router R, incorrectly routes
the datagram through router R, instead of through router R, (i.e., R, incorrectly chooses

138 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

a longer path than necessary). When router R; receives the datagram, it cannot send an
ICMP redirect message to R, because it does not know R,’s address. Later chapters ex-
plore the problem of how to propagare routes across multiple networks.

R4

Figure 9.5 ICMP redirect messages do not provide routing changes among
routers. In this example, router R, cannot redirect R, to use the
shorter path for datagrams from S to D.

In addition to the requisite TYPE, CODE, and CHECKSUM fields, each redirect
message contains a 32-bit ROUTER INTERNET ADDRESS field and an INTERNET
HEADER field, as Figure 9.6 shows.

0 8 16 31
TYPE(5) | CODE(0to3) | CHECKSUM
ROUTER INTERNET ADDRESS
INTERNET HEADER + FIRST 64 BITS OF DATAGRAM

Figure 9.6 ICMP redirect message format.

The ROUTER INTERNET ADDRESS field contains the address of a router that the host
is to use to reach the destination mentioned in the datagram header. The INTERNET
HEADER field contains the IP header plus the next 64 bits of the datagram that trig-
gered the message. Thus, a host receiving an ICMP redirect examines the datagram
prefix to determine the datagram’s destination address. The CODE field of an ICMP
redirect message further specifies how to interpret the destination address, based on
values assigned as follows:

Sec.9.11 Route Change Requests From Routers 139

Code Value Meaning
0 Redirect datagrams for the Net (now obsolete)
1 Redirect datagrams for the Host
2 Redirect datagrams for the Type of Servicet and Net
3 Redirect datagrams for the Type of Service and Host

As a general rule, routers only send ICMP redirect requests to hosts and not to oth-
er routers. We will see in later chapters that routers use other protocols to exchange
routing information.

9.12 Detecting Circular Or Excessively Long Routes

Because internet routers compute a next hop using local tables, errors in routing
tables can produce a routing cycle for some destination, D. A routing cycle can consist
of two routers that each route a datagram for destination D to the other, or it can consist
of several routers. When several routers form a cycle, they each route a datagram for
destination D to the next router in the cycle. If a datagram enters a routing cycle, it will
pass around the cycle endlessly. As mentioned previously, to prevent datagrams from
circling forever in a TCP/IP internet, each IP datagram contains a time-to-live counter,
sometimes called a hop count. A router decrements the time-to-live counter whenever it
processes the datagram and discards the datagram when the count reaches zero.

Whenever a router discards a datagram because its hop count has reached zero or
because a timeout occurred while waiting for fragments of a datagram, it sends an
ICMP time exceeded message back to the datagram’s source, using the format shown in
Figure 9.7.

0 8 16 31
TYPE (11) CODE (0 or 1) CHECKSUM
UNUSED (MUST BE ZERO)
INTERNET HEADER + FIRST 64 BITS OF DATAGRAM

Figure 9.7 ICMP time exceeded message format. A router sends this mes-
sage whenever a datagram is discarded because the time-to-live
field in the datagram header has reached zero or because its
reassembly timer expired while waiting for fragments.

ICMP uses the CODE field in each time exceeded message (value zero or one) to ex-
plain the nature of the timeout being reported:

tRecall that each IP header specifies a type of service used for routing.

140 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

Code Value Meaning
0 Time-to-live count exceeded
1 Fragment reassembly time exceeded

Fragment reassembly refers to the task of collecting all the fragments from a da-
tagram. When the first fragment of a datagram arrives, the receiving host starts a timer
and considers it an error if the timer expires before all the pieces of the datagram arrive.
Code value] is used to report such errors to the sender; one message is sent for each
such error.

9.13 Reporting Other Problems

When a router or host finds problems with a datagram not covered by previous
ICMP error messages (e.g., an incorrect datagram header), it sends a parameter problem
message to the original source. One possible cause of such problems occurs when argu-
ments to an option are incorrect. The message, formatted as shown in Figure 9.8, is
only sent when the problem is so severe that the datagram must be discarded.

0 8 16 31
TYPE (12) CODE (0or1) | CHECKSUM
POINTER UNUSED (MUST BE ZERO)

INTERNET HEADER + FIRST 64 BITS OF DATAGRAM

Figure 9.8 ICMP parameter problem message format. Such messages are
only sent when the problem causes the datagram to be dropped.

To make the message unambiguous, the sender uses the POINTER field in the message
header to identify the octet in the datagram that caused the problem. Code / is used to
report that a required option is missing (e.g., a security option in the military communi-
ty); the POINTER field is not used for code 1.

9.14 Clock Synchronization And Transit Time Estimation

Although machines on an internet can communicate, they usually operate indepen-
dently, with each machine maintaining its own notion of the current time. Clocks that
differ widely can confuse users of distributed systems software. The TCP/IP protocol
suite includes several protocols that can be used to synchronize clocks. One of the sim-
plest techniques uses an ICMP message to obtain the time from another machine. A re-

Sec.9.14 Clock Synchronization And Transit Time Estimation 141

questing machine sends an ICMP timestamp request message to another machine, ask-
ing that the second machine return its current value for the time of day. The receiving
machine returns a timestamp reply back to the machine making the request. Figure 9.9
shows the format of timestamp request and reply messages.

0 8 16 31
TYPE (130r14) | CODE (0) CHECKSUM
IDENTIFIER SEQUENCE NUMBER
ORIGINATE TIMESTAMP
RECEIVE TIMESTAMP
TRANSMIT TIMESTAMP

Figure 9.9 ICMP timestamp request or reply message format.

The TYPE field identifies the message as a request (13) or a reply (I/4); the IDEN-
TIFIER and SEQUENCE NUMBER fields are used by the source to associate replies
with requests. Remaining fields specify times, given in milliseconds since midnight,
Universal Timet. The ORIGINATE TIMESTAMP field is filled in by the original
sender just before the packet is transmitted, the RECEIVE TIMESTAMP field is filled
immediately upon receipt of a request, and the TRANSMIT TIMESTAMP field is filled
immediately before the reply is transmitted.

Hosts use the three timestamp fields to compute estimates of the delay time
between them and to synchronize their clocks. Because the reply includes the ORI-
GINATE TIMESTAMP field, a host can compute the total time required for a request to
travel to a destination, be transformed into a reply, and return. Because the reply carries
both the time at which the request entered the remote machine, as well as the time at
which the reply left, the host can compute the network transit time, and from that, esti-
mate the differences in remote and local clocks.

In practice, accurate estimation of round-trip delay can be difficult and substantial-
ly restricts the utility of ICMP timestamp messages. Of course, to obtain an accurate
estimate of round trip delay, one must take many measurements and average them.
However, the round-trip delay between a pair of machines that connect to a large inter-
net can vary dramatically, even over short periods of time. Furthermore, recall that be-
cause IP is a best-effort technology, datagrams can be dropped, delayed, or delivered
out of order. Thus, merely taking many measurements may not guarantee consistency;
sophisticated statistical analysis is needed to produce precise estimates.

+ Universal Time was formerly called Greenwich Mean Time; it is the time of day at the prime meridian.

142 Internet Protocol: Error And Control Messages (ICMP) Chap. 9
9.15 Information Request And Reply Messages

The ICMP information request and information reply messages (types 15 and 16)
are now considered obsolete and should not be used. They were originally intended to
allow hosts to discover their internet address at system startup. The current protocols
for address determination are RARP, described in Chapter 6, and BOOTP, described in
Chapter 23.

9.16 Obtaining A Subnet Mask

Chapter 10 discusses the motivation for subnet addressing as well as the details of
how subnets operate. For now, it is only important to understand that when hosts use
subnet addressing, some bits in the hostid portion of their IP address identify a physical
network. To participate in subnet addressing, a host needs to know which bits of the
32-bit internet address correspond to the physical network and which correspond to host
identifiers. The information needed to interpret the address is represented in a 32-bit
quantity called the subnet mask.

To learn the subnet mask used for the local network, a machine can send an ad-
dress mask request message to a router and receive an address mask reply. The
machine making the request can either send the message directly, if it knows the
router’s address, or broadcast the message if it does not. Figure 9.10 shows the format
of address mask messages.

0 8 16 31
TYPE (17 or 18) CODE (0) CHECKSUM
IDENTIFIER SEQUENCE NUMBER
ADDRESS MASK

Figure 9.10 ICMP address mask request or reply message format. Usually,
hosts broadcast a request without knowing which specific router
will respond.

The TYPE field in an address mask message specifies whether the message is a request
(17) or a reply (I8). A reply contains the network’s subnet address mask in the AD-
DRESS MASK field. As usual, the IDENTIFIER and SEQUENCE NUMBER fields al-
low a machine to associate replies with requests.

Sec.9.17 Router Discovery 143
9.17 Router Discovery

After a host boots, it must learn the address of at least one router on the local net-
work before it can send datagrams to destinations on other networks. ICMP supports a
router discovery scheme that allows a host to discover a router address.

ICMP router discovery is not the only mechanism a host can use to find a router
address. The BOOTP and DHCP protocols described in Chapter 23 provide the main
alternative — each of the protocols provides a way for a host to obtain the address of a
default router along with other bootstrap information. However, BOOTP and DHCP
have a serious deficiency: the information they return comes from a database that net-
work administrators configure manually. Thus, the information cannot change quickly.

Of course, static router configuration does work well in some situations. For ex-
ample, consider a network that has only a single router connecting it to the rest of the
Internet. There is no need for a host on such a network to dynamically discover routers
or change routes. However, if a network has multiple routers connecting it to the rest
of the Internet, a host that obtains a default route at startup can lose connectivity if a
single router crashes. More important, the host cannot detect the crash.

The ICMP router discovery scheme helps in two ways. First, instead of providing
a statically configured router address via a bootstrap protocol, the scheme allows a host
to obtain information directly from the router itself. Second, the mechanism uses a soft
state technique with timers to prevent hosts from retaining a route after a router crashes
— routers advertise their information periodically, and a host discards a route if the ti-
mer for a route expires.

Figure 9.11 illustrates the format of the advertisement message a router sends.

0 8 16 31
TYPE (9) CODE (0) CHECKSUM
NUM ADDRS | ADDR SIZE (1) LIFETIME
ROUTER ADDRESS 1
PREFERENCE LEVEL 1
ROUTER ADDRESS 2
PREFERENCE LEVEL 2

Figure 9.11 ICMP router advertisement message format used with IPv4.
Routers send these messages periodically.

Besides the TYPE, CODE, and CHECKSUM fields, the message contains a field
labeled NUM ADDRS that specifies the number of address entries which follow (often
1), an ADDR SIZE field that specifies the size of an address in 32-bit units (1 for IPv4

144 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

addresses), and a LIFETIME field that specifies the time in seconds a host may use the
advertised address(es). The default value for LIFETIME is 30 minutes, and the default
value for periodic retransmission is 10 minutes, which means that a host will not dis-
card a route if the host misses a single advertisement message.

The remainder of the message consists of NUM ADDRS pairs of fields, where each
pair contains a ROUTER ADDRESS and an integer PRECEDENCE LEVEL for the
route. The precedence value is a two’s complement integer; a host chooses the route
with highest precedence.

If the router and the network support multicast as described in Chapter 17, a router
multicasts ICMP router advertisement messages to the all-systems multicast address
(i.e., 224.0.0.1). If not, the router sends the messages to the limited broadcast address
(i.e., the all 1’s address). Of course, a host must never send a router advertisement mes-
sage.

9.18 Router Solicitation

Although the designers provided a range of values to be used as the delay between
successive router advertisements, they chose the defauit of 10 minutes. The value was
selected as a compromise between rapid failure detection and low overhead. A smaller
value would allow more rapid detection of router failure, but would increase network
traffic; a larger value would decrease traffic, but would delay failure detection. One of
the issues the designers considered was how to accommodate a large number of routers
on the same network.

From the point of view of a host, the default delay has a severe disadvantage: a
host cannot afford to wait many minutes for an advertisement when it first boots. To
avoid such delays, the designers included an ICMP router solicitation message that al-
lows a host to request an immediate advertisement. Figure 9.12 illustrates the message
format.

0 8 16 31
TYPE(10) | CODE(0) | CHECKSUM
RESERVED

Figure 9.12 ICMP router solicitation message. A host sends a solicitation
after booting to request that routers on the local net immediately
respond with an ICMP router advertisement.

If a host supports multicasting, the host sends the solicitation to the all-routers
multicast address (i.e., 224.0.0.2); otherwise the host sends the solicitation to the limited
broadcast address (i.e., the all 1’s address). The arrival of a solicitation message causes
a router to send a normal router advertisement. As the figure shows, the solicitation
does not need to carry information beyond the TYPE, CODE, and CHECKSUM fields.

Sec. 9.19 Summary 145
9.19 Summary

Normal communication across an internet involves sending messages from an ap-
plication on one host to an application on another host. Routers may need to communi-
cate directly with the network software on a particular host to report abnormal condi-
tions or to send the host new routing information.

The Internet Control Message Protocol provides for extranormal communication
among routers and hosts; it is an integral, required part of IP. ICMP includes source
quench messages that retard the rate of transmission, redirect messages that request a
host to change its routing table, echo request/reply messages that hosts can use to deter-
mine whether a destination can be reached, and router solicitation and advertisement
messages that hosts use to dynamically maintain a default route. An ICMP message
travels in the data area of an IP datagram and has three fixed-length fields at the begin-
ning of the message: an ICMP message rype field, a code field, and an ICMP checksum
field. The message type determines the format of the rest of the message as well as its
meaning.

FOR FURTHER STUDY

Both Tanenbaum [1981] and Stallings [1985] discuss control messages in general
and relate them to various network protocols. The central issue is not how to send con-
trol messages but when. Grange and Gien [1979], as well as Driver, Hopewell, and la-
quinto [1979], concentrate on a problem for which control messages are essential.
namely, flow control. Gerla and Kleinrock [1980] compares flow control strategies
analytically. For a discussion of clock synchronization protocols see Mills [RFCs 956,
957. and 1305].

The Internet Control Message Protocol described here is a TCP/IP standard defined
by Postel [RFC 792] and updated by Braden [RFC [1122]. Nagle [RFC 896] discusses
ICMP source quench messages and shows how routers should use them to handle
congestion control. Prue and Postel [RFC 1016] discusses a more recent technique
routers use in response to source quench. Nagle [1987] argues that congestion is always
a concern in packet switched networks. Mogul and Postel [RFC 950] discusses subnet
mask request and reply messages, and Deering [RFC 1256] discusses the solicitation
and advertisement messages used in router discovery. Jain, Ramakrishnan and Chiu
[1987] considers how routers and transport protocols could cooperate to avoid conges-
tion.

146

Internet Protocol: Error And Control Messages (ICMP) Chap. 9

EXERCISES

9.1

9.2

9.3
9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11
9.12

9.13

9.14

9.15

Devise an experiment to record how many of each ICMP message type appear on your lo-
cal network during a day.

Experiment to see if you can send packets through a router fast enough to trigger an ICMP
source quench message.

Devise an algorithm that synchronizes clocks using ICMP timestamp messages.

See if your local computer system contains a ping command. How does the program inter-
face with protocols in the operating system? In particular, does the mechanism allow an ar-
bitrary user to create a ping program, or does such a program require special privilege?
Explain.

Assume that all routers send ICMP time-exceeded messages, and that your local TCP/IP
software will return such messages to an application program. Use the facility to build a
traceroute command that reports the list of routers between the source and a particular des-
tination.

If you connect to the global Internet, try to ping host 128.10.2.1 (a machine at Purdue).
Should a router give ICMP messages priority over normal traffic? Why or why not?
Consider an Ethernet that has one conventional host, H, and 12 routers connected to it.
Find a single (slightly illegal) frame carrying an IP packet that, when sent by host H,
causes H to receive exactly 24 packets.

Compare ICMP source quench packets with Jain’s 1-bit scheme used in DECNET. Which
is a more effective strategy for dealing with congestion? Why?

There is no ICMP message that allows a machine to inform the source that transmission er-
rors are causing datagrams to arrive corrupted. Explain why.

In the previous question, under what circumstances might such a message be useful?
Should ICMP error messages contain a timestamp that specifies when they are sent? Why
or why not?

If routers at your site participate in ICMP router discovery, find out how many addresses
each router advertises on each interface.

Try to reach a server on a nonexistent host on your local network. Also try to communi-
cate with a nonexistent host on a remote network. In which case do you receive an error
message? Why? ‘

Try using ping with a network broadcast address. How many computers answer? Read the
protocol documents to determine whether answering a broadcast request is required, recom-
mended, not recommended, or prohibited.

10

Classless And Subnet
Address Extensions (CIDR)

10.1 Introduction

Chapter 4 discusses the original Internet addressing scheme and presents the three
primary forms of IP addresses. This chapter examines five extensions of the IP address
scheme all designed to conserve network prefixes. The chapter considers the motivation
for each extension and describes the basic mechanisms used. In particular, it presents
the details of the address subnet scheme that is now part of the TCP/IP standards, and
the classless address scheme that is an elective standard.

10.2 Review Of Relevant Facts

Chapter 4 discusses addressing in internetworks and presents the fundamentals of
the TP address scheme. We said that the 32-bit addresses are carefully assigned to make
the IP addresses of all hosts on a given physical network share a common prefix. In the
original IP address scheme, designers thought of the common prefix as defining the net-
work portion of an internet address and the remainder as a host portion. The conse-
quence of importance to us is:

In the original IP addressing scheme, each physical network is as-
signed a unique network address; each host on a network has the net-
work address as a prefix of the host’s individual address.

147

148 Classless And Subnet Address Extensions (CIDR) Chap. 10

The chief advantage of dividing an IP address into two parts arises from the size of the
routing tables required in routers. Instead of keeping one routing entry per destination
host, a router can keep one routing entry per network, and examine only the network
portion of a destination address when making routing decisions.

Recall that the original IP addressing scheme accommodated diverse network sizes
by dividing host addresses into three primary classes. Networks assigned class A ad-
dresses partition the 32 bits into an 8-bit network portion and a 24-bit host portion.
Class B addresses partition the 32 bits into” 16-bit network and host portions, while class
C partitions the address into a 24-bit network portion and an 8-bit host portion.

To understand some of the address extensions in this chapter, it will be important
to realize that individual sites have the freedom to modify addresses and routes as long
as the modifications remain invisible to other sites. That is, a site can choose to assign
and use IP addresses in unusual ways internally as long as:

¢ All hosts and routers at the site agree to honor the site’s addressing scheme.
e Other sites on the Internet can treat addresses as a network prefix and a host
suffix.

10.3 Minimizing Network Numbers

The original classful [P addressing scheme seems to handle all possibilities, but it
has a minor weakness. How did the weakness arise? What did the designers fail to en-
vision? The answer is simple: growth. Because they worked in a world of expensive
mainframe computers, the designers envisioned an internet with hundreds of networks
and thousands of hosts. They did not foresee tens of thousands of small networks of
personal computers that would suddenly appear in the decade after TCP/IP was
designed.

Growth has been most apparent in the connected Internet, where the size has been
doubling every nine to fifteen months. The large population of networks with trivial
size stresses the entire Internet design because it means (1) immense administrative
overhead is required merely to manage network addresses, (2) the routing tables in
routers are extremely large, and (3) the address space will eventually be exhaustedt.
The second problem is important because it means that when routers exchange informa-
tion from their routing tables, the load on the Internet is high, as is the computational
effort required in participating routers. The third problem is crucial because the original
address scheme could not accommodate the number of networks currently in the global
Internet. In particular, insufficient class B prefixes exist to cover all the medium-size
networks in the Internet. So the question is, ‘‘How can one minimize the number of as-
signed network addresses, especially class B, without abandoning the 32-bit addressing
scheme?”’

To minimize the number of addresses used, we must avoid assigning network pre-
fixes whenever possible, and the same IP network prefix must be shared by multiple
physical networks. To minimize the use of class B addresses, class C addresses must
be used instead. Of course, the routing procedures must be modified, and all machines
that connect to the affected networks must understand the conventions used.

tAlthough there were many predictions that the IPv4 address space would be exhausted before the year
2000, it now appears that with careful allocation and the techniques described in this chapter, IPv4 addresses
will suffice until around the year 2019.

Sec. 10.3 Minimizing Network Numbers 149

The idea of sharing one network address among multiple physical networks is not
new and has taken several forms. We will examine three: transparent routers, proxy
ARP, and standard IP subnets. In addition, we will explore anonymous point-to-point
networks, a special case in which no network prefix needs to be assigned. Finally, we
will consider classless addressing. which abandons the rigid class system and allows the
address space to be divided in arbitrary ways.

10.4 Transparent Routers

The transparent router scheme is based on the observation that a network assigned
a class A IP address can be extended through a simple trick illustrated in Figure 10.1.

WIDE AREA
NET

Bmimc

Figure 10.1 Transparent router 7 extending a wide area network to multiple
hosts at a site. Each host appears to have an IP address on the
WAN.

The trick consists of arranging for a physical network, usually a WAN, to multi-
plex several host connections through a single host port. As Figure 10.1 shows, a spe-
cial purpose router, T, connects the single host port from the wide area net to a local
area network. T is called a transparent router because other hosts and routers on the
WAN do not know it exists.

The local area network does not have its own IP prefix; hosts attached to it are as-
signed addresses as if they connected directly to the WAN. The transparent router
demultiplexes datagrams that arrive from the WAN by sending them to the appropriate
host (e.g., by using a table of addresses). The transparent router also accepts datagrams
from hosts on the local area network and routes them across the WAN toward their des-
tination.

To make demultiplexing efficéent, transparent routers often divide the IP address
into multiple parts and encode information in unused parts. For example, the AR-
PANET was assigned class A network address 0.0.0.0. Each packet switch node
(PSN) on the ARPANET had a unique integer address. Internally, the ARPANET treat-
od any 4-octet IP address of the form /0.p.u.i as four separate octets that specify a

150 Classless And Subnet Address Extensions (CIDR) Chap. 10

network (10), a specific port on the destination PSN (p), and a destination PSN (i).
Octet # remained uninterpreted. Thus, the ARPANET addresses 70.2.5.37 and
10.2.9.37 both refer to host 2 on PSN 37. A transparent router connected to PSN 37
on port 2 can use octet u to decide which real host should receive a datagram. The
WAN itself need not be aware of the multiple hosts that lie beyond the PSN.

Transparent routers have advantages and disadvantages when compared to conven-
tional routers. The chief advantage is that they require fewer network addresses because
the local area network does not need a separate IP prefix. Another is that they can sup-
port load balancing. That is, if two transparent routers connect to the same local area
network, traffic to hosts on that network can be split between them. By comparison,
conventional routers can only advertise one route to a given network.

One disadvantage of transparent routers is that they only work with networks that
have a large address space from which to choose host addresses. Thus, they work best
with class A networks, and they do not work well with class C networks. Another
disadvantage is that because they are not conventional routers, transparent routers do not
provide all the same services as standard routers. In particular, transparent routers may
not participate fully in ICMP or network management protocols like SNMP. Therefore,
they do not return ICMP echo requests (i.e., one cannot easily ‘‘ping’’ a transparent
router to determine if it is operating).

10.5 Proxy ARP

The terms proxy ARP, promiscuous ARP, and the ARP hack refer to a second tech-
nique used to map a single IP network prefix into two physical addresses. The tech-
nique, which only applies to networks that use ARP to bind internet addresses to physi-
cal addresses, can best be explained with an example. Figure 10.2 illustrates the situa-
tion.

Main Network

%} é} é] Router running proxy ARP
e
Hidden Network LH_I:I w_f]

Figure 10.2 Proxy ARP technique (the ARP hack) allows one network ad-
dress to be shared between two physical nets. Router R answers
ARP requests on each network for hosts on the other network,
giving its hardware address and then routing datagrams correctly
when they-arrive. In essence, R lies about IP-to-physical address
bindings.

Sec. 10.5 Proxy ARP 151

In the figure, two networks share a single IP network address. Imagine that the
network labeled Main Network was the original network, and that the second, labeled
Hidden Network, was added later. The router connecting the two networks, R, knows
which hosts lie on which physical network and uses ARP to maintain the illusion that
only one network exists. To make the illusion work, R keeps the location of hosts com-
pletely hidden, allowing all other machines on the network to communicate as if direct-
ly connected. In our example, when host H, needs to communicate with host H,, it first
invokes ARP to map H,’s IP address into a physical address. Once it has a physical ad-
dress, H, can send the datagram directly to that physical address.

Because R runs proxy ARP software, it captures the broadcast ARP request from
H,, decides that the machine in question lies on the other physical network, and
responds to the ARP request by sending its own physical address. H, receives the ARP
response, installs the mapping in its ARP table, and then uses the mapping to send da-
tagrams destined for H, to R. When R receives a datagram, it searches a special routing
table to determine how to route the datagram. R must forward datagrams destined for
H, over the hidden network. To allow hosts on the hidden network to reach hosts on
the main network, R performs the proxy ARP service on that network as well.

Routers using the proxy ARP technique are taking advantage of an important
feature of the ARP protocol, namely. trust. ARP is based on the idea that all machines
cooperate and that any response is legitimate. Most hosts install mappings obtained
through ARP without checking their validity and without maintaining consistency.
Thus, it may happen that the ARP table maps several IP addresses to the same physical
address, but that does not violate the protocol specification.

Some implementations of ARP are not as lax as others. In particular, ARP imple-
mentations designed to alert managers to possible security violations will inform them
whenever two distinct IP addresses map to the same physical hardware address. The
purpose of alerting the manager is to warn about spoofing, a situation in which one
machine claims to be another in order to intercept packets. Host implementations of
ARP that warn managers of possible spoofing cannot be used on networks that have
proxy ARP routers because the software will generate messages frequently.

The chief advantage of proxy ARP is that it can be added to a single router on a
network without disturbing the routing tables in other hosts or routers on that network.
Thus, proxy ARP completely hides the details of physical connections.

The chief disadvantage of proxy ARP is that it does not work for networks unless
they use ARP for address resolution. Furthermore, it does not generalize to more com-
plex network topology (e.g., multiple routers interconnecting two physical networks),
nor does it support a reasonable form of routing. In fact, most implementations of
proxy ARP rely on managers to maintain tables of machines and addresses manually.
making it both time consuming and prone to errors.

152 Classless And Subnet Address Extensions (CIDR) Chap. 10
10.6 Subnet Addressing

The third technique used to allow a single network address to span multiple physi-
cal networks is called subnet addressing, subnet routing, or subnetting. Subnetting is
the most widely used of the three techniques because it is the most general and because
it has been standardized. In fact, subnetting is a required part of IP addressing.

The easiest way to understand subnet addressing is to imagine that a site has a sin-
gle class B IP network address assigned to it, but it has two or more physical networks.
Only local routers know that there are multiple physical nets and how to route traffic
among them; routers in other autonomous systems route all traffic as if there were a sin-
gle physical network. Figure 10.3 shows an example.

Network 128.10.1.0

éj28.10.1.1 rlijz&w.tz

Network 128.10.2.0

128.10.2.1 128.10.2.2
all traffic to

128.10.0.0

REST OF THE
INTERNET

Figure 10.3 A site with two physical networks using subnet addressing to la-
bel them with a single class B network address. Router R ac-
cepts all traffic for net 128.10.0.0 and chooses a physical net-
work based on the third octet of the address.

In the example, the site is using the single class B network address 128.10.0.0 for
two networks. Except for router R, all routers in the internet route as if there were a
single physical net. Once a packet reaches R, it must be sent across the correct physical
network to its destination. To make the choice of physical network efficient, the local
site has chosen to use the third octet of the address to distinguish between the two net-
works. The manager assigns machines on one physical net addresses of the form
128.10.1. X. and machines on the other physical net addresses of the form 128.70.2. X,
where X, the final octet of the address, contains a small integer used to identify a specif-
ic host. To choose a physical network, R examines the third octet of the destination ad-
dress and routes datagrams with value / to the network labeled 728.10.1.0 and those
with value 2 to the network labeled /28.10.2.0.

Conceptually, adding subnets only changes the interpretation of IP addresses slight-
ly. Instead of dividing the 32-bit IP address into a network prefix and a host suffix,
subnetting divides the address into a network portion and a local portion. The interpre-

Sec. 10.6 Subnet Addressing 153

tation of the network portion remains the same as for networks that do not use subnet-
ting. As before, reachability to the network must be advertised to outside autonomous
systems; all traffic destined for the network will follow the advertised route. The in-
terpretation of the local portion of an address is left up to the site (within the constraints
of the formal standard for subnet addressing). To summarize:

We think of a 32-bit IP address as having an internet portion and a
local portion, where the internet portion identifies a site, possibly with
multiple physical networks, and the local portion identifies a physical
network and host at that site. '

The example of Figure 10.3 showed subnet addressing with a class B address that
had a 2-octet internet portion and a 2-octet local portion. To make routing among the
physical networks efficient, the site administrator in our example chose to use one octet
of the local portion to identify a physical network, and the other octet of the local por-
tion to identify a host on that network, as Figure 10.4 shows.

Internet local
part part
Internet physical host
part network

Figure 10.4 (a) Conceptual interpretation of a 32-bit [P address in the original
IP address scheme, .and (b) conceptual interpretation of ad-
dresses using the subnet scheme shown in Figure 10.3. The lo-
cal portion is divided into two parts that identify a physical net-
work and a host on that network.

The result is a form of hierarchical addressing that leads to corresponding
hierarchical routing. The top level of the routing hierarchy (i.e., other autonomous sys-
tems in the internet) uses the first two octets when routing, and the next level (i.e., the
local site) uses an additional octet. Finally, the lowest level (i.e., delivery across one
physical network) uses the entire address.

Hierarchical addressing is not new; many systems have used it before. The best
example is the U.S. telephone system, where a 10-digit phone number is divided into a
3-digit area code, 3-digit exchange, and 4-digit connection. The advantage of using

154 Classless And Subnet Address Extensions (CIDR) Chap. 10

hierarchical addressing is that it accommodates large growth because it means a given
router does not need to know as much detail about distant destinations as it does about
local ones. One disadvantage is that choosing a hierarchical structure is difficult, and it
often becomes difficult to change a hierarchy once it has been established.

10.7 Flexibility In Subnet Address Assignment

The TCP/IP standard for subnet addressing recognizes that not every site will have
the same needs for an address hierarchy; it allows sites flexibility in choosing how to
assign them. To understand why such flexibility is desirable, imagine a site with five
networks interconnected, as Figure 10.5 shows. Suppose the site has a single class B
network address that it wants to use for all physical networks. How should the local
part be divided to make routing efficient?

To rest of Internet

R,
Network 1
Network 2 Network 3
Network 4 Network 5

Figure 10.5 A site with five physical networks arranged in three “levels.”
The simplistic division of addresses into physical net and host
parts may not be optimal for such cases.

In our example, the site will choose a partition of the local part of the IP address
based on how it expects to grow. Dividing the 16-bit local part into an 8-bit network
identifier and an 8-bit host identifier as shown in Figure 10.4 allows up to 256 net-
works, with up to 256 hosts per networkt. Figure 10.6 illustrates the possible choices if
a site uses the ﬁxed-‘length subnetting scheme described above and avoids the all Os and
all 1s subnet and host addresses.

+In practice. the limit is 254 subnets of 254 hosts per subnet because the all 1s and all Os host addresses
are reserved for broadcast. and the all 1s or all Os subnet is not recommended.

Sec. 10.7 Flexibility In Subnet Address Assignment 155

Subnet Bits Number of Subnets Hosts per Subnet
0 1 65534
2 2 16382
3 6 8190
4 14 4094
5 30 2046
6 62 1022
7 126 510
8 254 254
9 510 126

10 1022 62
11 2046 30
12 4094 14
13 8190 6
14 16382 2

Figure 10.6 The possible fixed-length subnets sizes for a class B number,
with 8 subnet bits being the most popular choice; an organiza-
tion must choose one line in the table.

As the figure shows, an organization that adopts fixed-length subnetting must
choose a compromise. If the organization has a large number of physical networks, the
networks cannot contain many hosts; if the number of hosts on a network is large, the
number of physical networks must be small. For example, allocating 3 bits to identify a
physical network results in up to 6 networks that each support up to 8190 hosts. Allo-
cating 12 bits results in up to 4094 networks, but restricts the size of each to 62 hosts.

10.8 Variable-Length Subnets

We have implied that choosing a subnet addressing scheme is synonymous with
choosing how to partition the local portion of an IP address into physical net and host
parts. Indeed, most sites that implement subnetting use a fixed-length assignment. It
should be clear that the designers did not choose a specific division for subnetting be-
cause no single partition of the local part of the address works for all organizations —
some need many networks with few hosts per network, while others need a few net-
works with many hosts attached to each. The designers realized that the same problem
can exist within a single organization. To allow maximum autonomy, the TCP/IP sub-
net standard provides even more flexibility than indicated above. An organization may
select a subnet partition on a per-network basis. Although the technique is known as
variable-length subnetting, the name is slightly misleading because the value does not
“‘vary’’ over time — once a partition has been selected for a particular network, the
partition never changes. All hosts and routers attached to that network must follow the
decision; if they do not, datagrams can be lost or misrouted. We can summarize:

156 Classless And Subnet Address Extensions (CIDR) Chap. 10

To allow maximum flexibility in choosing how to partition subnet ad-
dresses, the TCP/IP subnet standard permits variable-length subnet-
ting in which the partition can be chosen independently for each phy-
sical network. Once a subnet partition has been selected. all
machines on that network must honor it.

The chief advantage of variable-length subnetting is flexibility: an organization can
have a mixture of large and small networks. and can achieve higher utilization of the
address space. However. variable-length subnetting has serious disadvantages. Most
important, values for subnets must be assigned carefully to avoid address ambiguity, a
situation in which an address is interpreted differently depending on the physical net-
work. For example, an address can appear to match two different subnets. As a result,
invalid variable-length subnets may make it impossible for all pairs of hosts to com-
municate. Routers cannot resolve such ambiguity, which means that an invalid assign-
ment can only be repaired by renumbering. Thus, network managers are discouraged
from using variable-length subnetting.

10.9 Implementation Of Subnets With Masks

The subnet technology makes configuration of either fixed or variable length easy.
The standard specifies that a 32-bit mask is used to specify the division. Thus. a site
using subnet addressing must choose a 32-bit subnet mask for each network. Bits in the
subnet mask are set to / if machines on the network treat the corresponding bit in the TP
address as part of the subnet prefix, and 0 if they treat the bit as part of the host identif-
ier. For example, the 32-bit subnet mask:

11111111 11111111 11111111 00000000

specifies that the first three octets identify the network and the fourth octet identifies a
host on that network. A subnet mask should have /s for all bits that correspond to the
network portion of the address (e.g., the subnet mask for a class B network will have /s
for the first two octets plus one or more bits in the last two octets).

The interesting twist in subnet addressing arises because the standard does not res-
trict subnet masks to select contiguous bits of the address. For example, a network
might be assigned the mask:

11111111 11111111 00011000 01000000

which selects the first two octets, two bits from the third octet. and one bit from the
fourth. Although such flexibility makes it possible to arrange interesting assignments of
addresses to machines, doing so makes assigning host addresses and understanding rout-
ing tables tricky. Thus, it is recommended that sites use contiguous subnet masks and

See. 10.9 Implementation Of Subnets With Masks 157

that they use the same mask throughout an entire set of physical nets that share an IP
address.

10.10 Subnet Mask Representation

Specifying subnet masks in binary is both awkward and prone to errors. Therefore,
most software allows alternative representations. Sometimes, the representation follows
whatever conventions the local operating system uses for representation of binary quan-
tities. (e.g., hexadecimal notation).

Most IP software uses dotted decimal representation for subnet masks; it works
best when sites choose to align subnetting on octet boundaries. For example, many
sites choose to subnet class B addresses by using the third octet to identify the physical
net and the fourth octet to identify hosts as on the previous page. In such cases, the
subnet mask has dotted decimal representation 255.255.255.0, making it easy to write
and understand.

The literature also contains examples of subnet addresses and subnet masks
represented in braces as a 3-tuple:

{ <network number>, <subnet number>, <host number> }
In this representation, the value -/ means “‘all ones.”” For example, if the subnet mask
for a class B network is 255.255.255.0, it can be written {-1, -1, 0).

The chief disadvantage of the 3-tuple representation is that it does not accurately
specify how many bits are used for each part of the address; the advantage is that it
abstracts away from the details of bit fields and emphasizes the values of the three parts
of the address. To see why address values are sometimes more important than bit
fields, consider the 3-tuple:

{128.10,-1,0}

which denotes an address with a network number /28.70, all ones in the subnet field,
and all zeroes in the host field. Expressing the same address value using other
representations requires a 32-bit subnet mask as well as a 32-bit IP address, and forces
readers to decode bit fields before they can deduce the values of individual fields.
Furthermore. the 3-tuple representation is independent of the IP address class or the size
of the subnet field. Thus, the 3-tuple can be used to represent sets of addresses or
abstract ideas. For example, the 3-tuple:

{ <network number>, -1, -1}

X

addresses with a valid network number, a subnet field containing all ones, and
” We will see additional examples later in this chapter.

denotes
a host field containing all ones.

158 Classless And Subnet Address Extensions (CIDR) Chap. 10
10.11 Routing In The Presence Of Subnets

The standard IP routing algorithm must be modified to work with subnet addresses.
All hosts and routers attached to a network that uses subnet addressing must use the
modified algorithm, which is called subnet routing. What may not be obvious is that
unless restrictions are added to the use of subnetting, other hosts and routers at the site
may also need to use subnet routing. To see how a problem arises without restrictions,
consider the example set of networks shown in Figure 10.7.

In the figure, physical networks 2 and 3 have been (illegally) assigned subnet ad-
dresses of a single IP network address, N. Although host H does not directly attach to a
network that has a subnet address, it must use subnet routing to decide whether to send
datagrams destined for network N to router R, or router R,. It could be argued that H
can send to either router and let them handle the problem, but that solution means not
all traffic will follow a shortest path. In larger examples, the difference between an op-
timal and nonoptimal path can be significant.

Net 1 (not a subnet address)

Net 2 (subnet of address N)+ + Net 3 (subnet of address N)

Figure 10.7 An example (illegal) topology with three networks where Nets 2
and 3 are subnets of a single IP network address, N. If such to-
pologies were allowed, host H would need to use subnet routing
even though Net / does not have a subnet address.

In theory, a simple rule determines when machines need to use subnet routing.
The subnet rule is:

To achieve optimal routing, a machine M must use subnet routing for
an IP network address N, unless there is a single path P such that P
is a shortest path between M and every physical network that is a
subnet of N.

Unfortunately, understanding the theoretical restriction does not help in assigning sub-
nets. First, shortest paths can change if hardware fails or if routing algorithms redirect
traffic around congestion. Such dynamic changes make it difficult to use the subnet
rule except in trivial cases. Second, the subnet rule fails to consider the boundaries of
sites or the difficulties involved in propagating subnet masks. It is impossible to pro-
pagate subnet routes beyond the boundary of a given organization because the routing
protocols discussed later do not provide for it. Realistically, it becomes extremely diffi-
cult to propagate subnet information beyond a given physical network. Therefore, the
designers recommend that if a site uses subnet addressing, that site should keep subnet-

Sec. 10.11 Routing In The Presence Of Subnets 159

ting as simple as possible. In particular, network administrators should adhere to the
following guidelines:

All subnets of a given network IP address must be contiguous, the
subnet masks should be uniform across all networks, and all machines
should participate in subnet routing.

The guidelines pose special difficulty for a large corporation that has multiple sites each
connected to the Internet, but not connected directly to one another. Such a corporation
cannot use subnets of a single address for all its sites because the physical networks are
not contiguous.

10.12 The Subnet Routing Algorithm

Like the standard IP routing algorithm, the algorithm used with subnets searches a
table of routes. Recall that in the standard algorithm, per-host routes and default routes
are special cases that must be checked explicitly; table lookup is used for all others. A
conventional routing table contains entries of the form:

(network address, next hop address)

where the network address field specifies the IP address of a destination network, N,
and the next hop address field specifies the address of a router to which datagrams des-
tined for N should be sent. The standard routing algorithm compares the network por-
tion of a destination address to the network address field of each entry in the routing
table until a match is found. Because the next hop address field is constrained to speci-
fy a machine that is reachable over a directly connected network, only one table lookup
is ever needed.

The standard algorithm knows how an address is partitioned into network portion
and local portion because the first three bits encode the address type and format (i.e.,
class A, B, C, or D). With subnets, it is not possible to decide which bits correspond to
the network and which to the host from the address alone. Instead, the modified algo-
rithm used with subnets maintains additional information in the routing table. Each
table entry contains one additional field that specifies the subnet mask used with the
network in that entry:

(subnet mask, network address, next hop address)

When choosing routes, the modified algorithm uses the subnet mask to extract bits of
the destination address for comparison with the table entry. That is, it performs a bit-
wise Boolean and of the full 32-bit destination IP address and the subnet mask field
from an entry, and it then checks to see if the result equals the value in the network ad-
dress field of that entry. If so, it routes the datagram to the address specified in the next
hop address fieldt of the entry.

tAs in the standard routing algorithm. the next hop router must be reachable by a directly connected net-
work.

160 Classless And Svbnet Address Extensions (CIDR) Chap. 10
10.13 A Unified Routing Algorithm

Observant readers may have guessed that if we allow arbitrary masks, the subnet
routing algorithm can subsume all the special cases of the standard algorithm. It can
handle routes to individual hosts, a default route, and routes to directly connected net-
works using the same masking technique it uses for subnets. In addition, masks can
handle routes to conventional classful addresses. The flexibility comes from the ability
to combine arbitrary 32-bit values in a subnet mask field and arbitrary 32-bit addresses
in a network address field. For example, to install a route for a single host, one uses a
mask of all /s and a network address equal to the host's IP address. To install a default
route, one uses a subnet mask of all Os and a network address of all Os (because any
destination address and zero equals zero). To install a route to a (nonsubnetted) class B
network, one specifies a mask with two octets of /s and two octets of 0s. Because the
table contains more information, the routing algorithm contains fewer special cases as
Figure 10.8 shows.

Algorithm:
Route_IP_Datagram (datagram, routing_table)

Extract destination IP address, lo, from datagram;

If prefix of Io matches address of any directly connected
network send datagram to destination over that network
(This involves resolving Io to a physical address,
encapsulating the datagram, and sending the frame.)

else
for each entry in routing table do

Let N be the bitwise-and of Io and the subnet mask
If N equals the network address field of the entry then
route the datagram to the specified next hop address
endforloop
If no matches were found, declare a routing error;

Figure 10.8 The unified IP routing algorithm. Given an IP datagram and a
routing table with masks, this algorithm selects a next hop router
to which the datagram should be sent. The next hop must lie on
a directly connected network.

Sec. 10.13 A Unified Routing Algorithm 161

In fact, most implementations eliminate the explicit test for destinations on directly
connected networks. To do so, one must add a table entry for each directly connected
network. Like other entries, each entry for a directly connected network contains a
mask that specifies the number of bits in the prefix.

10.14 Maintenance Of Subnet Masks

How do subnet masks get assigned and propagated? Chapter 9 answered the
second part of the question by showing that a host can obtain the subnet mask for a
given network by sending an ICMP subnet mask request to a router on that network.
The request can be broadcast if the host does not know the specific address of a router.
Later chapters will complete the answer to the second part by explaining that some of
the protocols routers use to exchange routing information pass subnet masks along with
each network address.

The first part of the question is more difficult to answer. Each site is free to
choose subnet masks for its networks. When making assignments, managers attempt to
balance sizes of networks, numbers of physical networks, expected growth, and ease of
maintenance. Difficulty arises because nonuniform masks give the most flexibility, but
make possible assignments that lead to ambiguous routes. Or worse, they allow valid
assignments that become invalid if more hosts are added to the networks. There are no
easy rules, so most sites make conservative choices. Typically, a site selects contiguous
bits from the local portion of an address to identify a network, and uses the same parti-
tion (i.e., the same mask) for all local physical networks at the site. For example, many
sites simply use a single subnet octet when subnetting a class B address.

10.15 Broadcasting To Subnets

Broadcasting is more difficult in a subnet architecture. Recall that in the original
IP addiessing scheme, an address with a host portion of all /s denotes broadcast to all
hosts on the specified network. From the viewpoint of an observer outside a subnetted
site, broadcasting to the network address still makes senset. That is, the address:

{ network, -1, -1}

means ‘‘deliver a copy to all machines that have network as their network addresses,
even if they lie on separate physical networks.”” Operationally, broadcasting to such an
address makes sense only if the routers that interconnect the subnets agree to propagate
the datagram to all physical networks. Of course, care must be taken to avoid routing
loops. In particular, a router cannot merely propagate a broadcast packet that arrives on
one interface to all interfaces that share the subnet prefix. To prevent such loops,
routers use reverse path forwarding. The router extracts the source of the broadcast da-
tagram, and looks up the source in its routing table. The router then discards the da-

+Classless addressing, covered later in this chapter, has made broadcasting to all subnets obsolete.

162 Classless And Subnet Address Extensions (CIDR) Chap. 10

tagram unless it arrived on the interface used to route to the source (i.e., arrived from
the shortest path).

Within a set of subnetted networks, it becomes possible to broadcast to a specific
subnet (i.e., to broadcast to all hosts on a physical network that has been assigned one
of the subnet addresses). The subnet address standard uses a host field of all ones to
denote subnet broadcast. That is, a subnet broadcast address becomes:

{ network, subnet, -1}

Considering subnet broadcast addresses and subnet broadcasting clarifies the
recommendation for using a consistent subnet mask across all networks that share a
subnetted IP address. As long as the subnet and host fields are identical, subnet broad-
cast addresses are unambiguous. More complex subnet address assignments may or
may not allow broadcasting to selected subsets of the physical networks that comprise a
subnet.

10.16 Anonymous Point-To-Point Networks

In the original IP addressing scheme, each network was assigned a unique prefix.
In particular, because IP views each point-to-point connection between a pair of
machines as a “‘network,”” the connection was assigned a network prefix and each com-
puter was assigned a host suffix. When addresses became scarce, th. .se of a prefix for
each point-to-point connection seemed absurd. The problem is especially severe for or-
ganizations that have many point-to-point connections. For example, an organization
with multiple sites might use leased digital circuits (e.g., TI lines) to form a backbone
that interconnects a router at each site to routers at other sites.

To avoid assigning a prefix to each point-to-point connection, a simple technique
was invented. Known as anonymous networking, the technique is often applied when a
pair of routers is connected with a leased digital circuit. The technique simply avoids
numbering the leased line, and does not assign a host address to the routers at each end.
No hardware address is needed, so the interface software is configured to ignore the
next hop address when sending datagrams. Consequently, an arbitrary value can be
used as the next-hop address in the IP routing table.

When the anonymous networking technique is applied to a point-to-point connec-
tion, the connection is known as an unnumbered network or an anonymous network.
The example in Figure 10.9 will help explain routing in unnumbered networks.

Sec. 10.16 Anonymous Point-To-Point Networks 163

128.10.0.0 128.211.0.0
R, leased serial line R,
12
128.10.2.250 (a) 128.211.0.100
TO REACH HOSTS ROUTE TO USING THIS
ON NETWORK THIS ADDRESS INTERFACE
128.10.0.0 DELIVER DIRECT 1
default 128.211.0.100 2

(b)

Figure 10.9 (a) An unnumbered point-to-point connection between two
routers, and (b) the routing table in router R .

To understand why unnumbered networks are possible, one must remember that
serial lines used for point-to-point connections do not operate like shared-media
hardware. Because there is only one possible destination — the computer at the other
end of the circuit — the underlying hardware does not use physical addresses when
transmitting frames. Consequently, when IP hands a datagram to the network interface.
any value can be specified as a next hop because the hardware will ignore it. Thus, the
next-hop field of the IP routing table can contain an arbitrary value (e.g., zero).

The routing table in Figure 10.9b does not have a zero in the next hop field. In-
stead, the example demonstrates a technique often employed with unnumbered net-
works. Rather than leaving the next hop empty, it is filled with one of the IP addresses
assigned to the next-hop router (i.e., an address assigned to another of the router’s inter-
faces). In the example, the address of R,’s Ethernet connection has been used.

We said that the hardware ignores the next hop address, so it may seem odd that a
value has been assigned. It may seem even more odd that the next-hop refers to a net-
work not directly reachable from R,. In fact, neither IP nor the network interface code
uses the value in any way. The only reason for specifying a non-zero entry is to make
it easier for humans to understand and remember the address of the router on the other
end of the point-to-point connection. In the example, we chose the address assigned to
R,’s Ethernet interface because R, does not have an address for the leased line interface.

164 Classless And Subnet Address Extensions (CIDR) Chap. 10
10.17 Classless Addressing (Supernetting)

Subnet addressing was invented in the early 1980s to help conserve the IP address
space; the unnumbered networking technique followed. By 1993, it became apparent
that those techniques alone would not prevent Internet growth from eventually exhaust-
ing the address space. Work had begun on defining an entirely new version of IP with
larger addresses. To accommodate growth until the new version of IP could be stand-
ardized and adopted, however, a temporary solution was found.

Called classless addressing, supernet addressing, or supernetting, the scheme takes
an approach that is complementary to subnet addressing. Instead of using a single IP
network prefix for multiple physical networks at a given organization, supernetting al-
lows the addresses assigned to a single organization to span multiple classed prefixes.

To understand why classless addressing was adopted, one needs to know three
facts. First, the classful scheme did not divide network addresses into classes equally.
Although less than seventeen thousand class B numbers can be assigned, more than two
million class C network numbers exist. Second, class C numbers were being requested
slowly; only a small percentage of them had been assigned. Third, studies showed that
at the rate class B numbers were being assigned, class B prefixes would be exhausted
quickly. The situation became known as the Running Out of ADdress Space (ROADS)
problem.

To understand how supemnetting works, consider a medium-sized organization that
joins the Internet. Such an organization would prefer to use a single c'zss B address for
two reasons: a class C address cannot accommodate more than 254 nosts and a class B
address has sufficient bits to make subnetting convenient. To conserve class B
numbers, the supernetting scheme assigns an organization a block of class C addresses
instead of a single class B number. The block must be large enough to number all the
networks the organization will eventually connect to the Internet. For example, suppose
an organization requests a class B address and intends to subnet using the third octet as
a subnet field. Instead of a single class B number, supernetting assigns the organization
a block of 256 contiguous class C numbers that the organization can then assign to phy-
sical networks.

Although supernetting is easy to understand when viewed as a way to satisfy a sin-
gle organization, the proposers intended it to be used in a broader context. They en-
visioned a hierarchical Internet in which commercial Internet Service Providers (ISPs)
provide Internet connectivity. To connect its networks to the Internet, an organization
contracts with an ISP; the service provider handles the details of assigning IP addresses
to the organization as well as installing physical connections. The designers of super-
netting propose that an Internet Service Provider be assigned a large part of the address
space (i.e., a set of addresses that span many class C network numbers). The ISP can
then allocate one or more addresses from the set to each of its subscribers.

Sec. 10.18 The Effect Of Supernetting On Routing 165
10.18 The Effect Of Supernetting On Routing

Allocating many class C addresses in place of a single class B address conserves
class B numbers and solves the immediate problem of address space exhaustion. How-
ever, it creates a new problem: the information that routers store and exchange increases
dramatically. For example, assigning an organization 256 class C addresses instead of a
class B address requires 256 routes instead of one.

A technique known as Classless Inter-Domain Routingt (CIDR) solves the prob-
lem. Conceptually, CIDR collapses a block of contiguous class C addresses into a sin-
gle entry represented by a pair:

(network address, count)

where nemwork address is the smallest address in the block, and count specifies the total
number of network addresses in the block. For example, the pair:

(192.5.48.0, 3)

is used to specify the three network addresses 192.5.48.0, 192.5.49.0, and 192.5.50.0.

If a few Internet Service Providers form the core of the Internet and each ISP owns
a large block of contiguous IP network numbers, the benefit of supernetting becomes
clear: routing tables are much smaller. Consider routing table entries in routers owned
by service provider P. The table must have a correct route to each of P’s subscribers,
but the table does not need to contain a route for other providers’ subscribers. Instead,
the table stores one entry for each other provider, where the entry identifies the block of
addresses owned by the provider.

10.19 CIDR Address Blocks And Bit Masks

In practice, CIDR does not restrict network numbers to class C addresses nor does
it use an integer count to specify a block size. Instead, CIDR requires the size of each
block of addresses to be a power of two, and uses a bit mask to identify the size of the
block. For example, suppose an organization is assigned a block of 2048 contiguous
addresses starting at address 128.211.168.0. The table in Figure 10.10 shows the binary
values of addresses in the range.

CIDR requires two items to specify the block of addresses in Figure 10.10: the
32-bit value of the lowest address in the block and a 32-bit mask. The mask operates
like a standard subnet mask by delineating the end of the prefix}. For the range shown,
a2 CIDR mask has 21 bits set, which means that the division between prefix and suffix
occurs after the 21* bit:

11111111 11111111 11111000 00000000

+The name is a slight misnomer because the scheme specifies addressing as well as routing.
+Unlike a subnet mask, a CIDR mask must use contiguous bits.

Y60 Classless Ard Subnet Address Extensions (CIDR) Chap. 10

Dotted Decimal 32-bit Binary Equivalent

lowest 128.211.168.0 10000000 11010011 10101000 00000000
highest 128.211.175.255 10000000 11010011 10101111 11111111

Figure 10.10 An example CIDR block of 2048 addresses. The table shows
the lowest and highest addresses in the range expressed as dot-
ted decimal and binary values.

10.20 Address Blocks And CIDR Notation

Because identifying a CIDR block requires both an address and a mask, a short-
hand notation was devised to express the two items. Called CIDR notation but known
informally as slash notation, the shorthand represents the mask length in decimal and
uses a slask to separate it from the address. Thus, in CIDR notation, the block of ad-
dresses in Figurc 10.10 would be expressed as:

128.211.168.0/21
where /21 denotes 21 bits in a mask. The table in Figure 10.11 lists dotted decimal

values for all possible CIDR masks. The /8. /16, and /24 prefixes correspond to tradi-
tional class A, B, and C divisions.

CIDR Notation Dotted Decimal | CIDR Notation Dotted Decimal
/1 128.0.0.0 /17 255.255.128.0
/2 192.0.0.0 /18 255.255.192.0
/3 224.0.0.0 /19 255.255.224.0
/4 240.0.0.0 /20 255.255.240.0
/5 248.0.0.0 /21 255.255.248.0
/6 252.0.0.0 /22 255.255.252.0
/7 254.0.0.0 /23 255.255.254.0
/8 255.0.0.0 /24 255.255.255.0
/9 255.128.0.0 /25 255.255.255.128

/10 255.192.0.0 /26 255.255.255.192
/11 255.224.0.0 127 255.255.255.224
/12 255.240.0.0 /28 255.255.255.240
/13 255.248.0.0 /29 255.255.255.248
/14 255.252.0.0 /30 255.255.255.252
/15 255.254.0.0 /31 255.255.255.254
/16 255.255.0.0 /32 255.255.255.255

Figure 10.11 Dotted decimal mask values for all possible CIDR prefixes.

Sec. 10.21 A Classless Addressing Example 167
10.21 A Classless Addressing Example

The table in Figure 10.11 illustrates one of the chief advantages of classless ad-
dressing: complete flexibility in allocating blocks of various sizes. With CIDR, the ISP
can choose to assign each customer a block of an appropriate size. If it owns a CIDR
block of N bits, an ISP can choose to hand customers any piece of more than N bits.
For example, if the ISP is assigned 128.211.0.0/ 16, the ISP may choose to give one of
its customers the 2048 address in the /21 range that Figure 10.10 specifies. If the same
ISP also has a small customer with only two computers, the ISP might choose to assign
another block 128.211.176.212/29, which covers the address range that Figure 10.12
specifies.

Dotted Decimal 32-bit Binary Equivalent

lowest 128.211.176.212 10000000 11010011 10110000 11010100
highest 128.211.176.215 10000000 11010011 10110000 11010111

Figure 10.12 An example of CIDR block 128.211.176.212/29. The use of
an arbitrary bit mask allows more flexibility in assigning a
block size than the classful addressing scheme.

One way to think about classless addresses is as if each customer of an ISP obtains
a (variable-length) subnet of the ISP's CIDR block. Thus, a given block of addresses
can be subdivided on an arbitrary bit boundary, and a separate route can be entered for
each subdivision. As a result, although the group of computers on a given network will
be assigned addresses in a contiguous range, the range does not need to correspond to a
predefined class. Instead, the scheme makes subdivision flexible by allowing one to
specify the exact number of bits that correspond to a prefix. To summarize:

Classless addressing, which is now used by ISPs, treats IP addresses
as arbitrary integers, and allows a network administrator to assign
addresses in contiguous blocks, where the number of addresses in a
block is a power of two.

10.22 Data Structures And Algorithms For Classless Lookup

The fundamental criterion used to judge the algorithms and data structures used
with routing tables is speed. There are two aspects: the primary consideration is the
speed of finding a next hop for a given destination, while a secondary consideration is
the speed of making changes to values in the table.

The introduction of classless addressing had a profound effect on routing because it
changed a fundamental assumption: unlike a classful address, a CIDR address is not
self-identifying. That is, a router cannot determine the division between prefix and suf-

168 Classless And Subnet Address Extensions (CIDR) Chap. 10

fix merely by looking at the address. The difference is important because it means that
data structures and search algorithms used with classful addresses do not work when
routing tables contain classless addresses. After a brief review of classful lookup, we
will consider one of the data structures used for classless lookup.

10.22.1 Hashing And Classful Addresses

All route lookup algorithms are optimized for speed. When IP permitted only
classful addresses, a single technique provided the necessary optimization: hashing.
When a classful address is entered in a routing table, the router extracts the network
portion, N, and uses it as a hash key. Similarly, given a destination address, the router
also extracts the network portion, N, computes a hash function A(N), and uses the result
as an index into a bucket.

Hashing works well in a classful situation because addresses are self-identifying.
Even if some entries in a table correspond to subnet routes, hashing is still efficient be-
cause the network portion of the address can be extracted and used as a key. If multiple
routes hash to the same bucket in the table, entries within the bucket are arranged in de-
creasing order of specificity — subnet routes precede network routes. Thus, if a given
destination matches both a network route and a subnet route, the algorithm will correct-
ly find and use the subnet route.

In a classless world, however, where addresses are not self-identifying, hashing
does not work well. Because it cannot compute the division between prefix and suffix,
a router cannot find a hash key for an arbitrary address. Thus, an alternate scheme must
be found.

10.22.2 Searching By Mask Length

The simplest lookup algorithm that accommodates classless addressing merely
iterates over all possible divisions between prefix and suffix. That is, given a destina-
tion address, D, the algorithm first tries using 32 bits of D, then 31 bits, and so on down
to 0 bits. For each possible size, M, the router extracts M bits from D, assumes the ex-
tracted bits comprise a network prefix, and looks up the prefix in the table. The algo-
rithm chooses the longest prefix that corresponds to a route in the table (i.e., the search
stops as soon as a match has been found).

The disadvantage of trying all possible lengths should be obvious: doing so is
many times slower than a standard classful lookup because the algorithm must search
the table for each possible prefix size until a match is found. The worst case occurs
when no route exists; in which case, the algorithm searches the table 32 times. Even
when it finds a route, a router using the iterative approach searches the table many
times unnecessarily. For example, 16 lookups are required before a router can find a
traditional class B network (i.e., /16) route. More important, the algorithm performs 31
unnecessary lookups before it succeeds in matching the default route (in many routing
tables, the default route is heavily used).

Sec. 10.22 Data Structures And Algorithms For Classless Lookup 169
10.22.3 Binary Trie Structures

To avoid inefficient searches, production software for classless routing lookup
must avoid the iterative approach. Instead, classless routing tables are usually stored in
a hierarchical data structure, and searching proceeds down the hierarchy. The most po-
pular data structures are variants of a binary trie in which the value of successive bits in
the address determine a path from the root downward.

A binary trie is a tree with paths determined by the data stored. To visualize a
binary trie, imagine that a set of 32-bit addresses is written as binary strings and redun-
dant suffixes are removed. What remains is a set of prefixes that uniquely identify each
item. For example, Figure 10.13 shows a set of seven addresses written in binary and
the corresponding unique prefixes.

As Figure 10.13 illustrates, the number of bits required to identify an address
depends on the values in the set. For example, the first address in the figure can be
uniquely identified by three bits because no other addresses begin with 00I. However,
five bits are required to identify the last item in the table because the 4-bit prefix 107/
is shared by more than one item.

32-Bit Address Unique Prefix

00110101 00000000 00000000 00000000 001
01000110 00000000 00000000 00000000 0100
01010110 00000000 00000000 00000000 0101
01100001 00000000 00000000 00000000 011
10101010 11110000 00000000 00000000 1010
10110000 00000010 00000000 00000000 10110
10111011 00001010 00000000 00000000 10111

Figure 10.13 A set of 32-bit binary addresses and the corresponding set of
prefixes that uniquely identify each.

Once a set of unique prefixes has been computed, they can be used to define a
binary trie. Figure 10.14 illustrates a trie for the seven prefixes in Figure 10.13.

170 Classless And Subnet Address Extensions (CIDR) Chap. 10

Figure 10.14 A binary trie for the seven binary prefixes listed in Figure
10.13. The path through the trie for prefix 0/0/ is shown dark-
ened.

Each interior node in the trie (shown as a circle) corresponds to two or more pre-
fixes, and each exterior node (shown as a square) corresponds to one unique prefix.
The search algorithm stops when it reaches an exterior node or when no path exists for
the specified prefix. For example, a search for address

10010010 11110000 00000000 00000001

fails because there is no branch with label 0 at the node corresponding to /0.

To make routing lookup efficient, routing software that handles class-
less routes must use data structures and algorithms that differ from
those used for classful lookup. Many systems use a scheme based on
a binary trie to accommodate classless lookup.

10.23 Longest-Match Routing And Mixtures Of Route Types

Our brief description of binary tries only gives a sketch of the data structure used
in practice. For example, we said that a trie only needs to store a unique prefix for each
route in the table, without stating that the prefix must cover the entire network portion
of the route. To guarantee that a router does not forward datagrams unless the entire
network prefix in the destination matches the route, each exterior node in the trie must

Sec. 10.23 Longest-Match Routing And Mixtures Of Route Types 171

contain a 32-bit address, A, and a 32-bit mask, M, that covers the entire network portion
of A. When the search reaches an exterior node, the algorithm computes the logical and
of M with the destination address, and compares the result to A in the same way that
conventional lookup algorithms do. If the comparison fails, the datagram is rejected
(also like conventional lookup algorithms). In other words, we can view the trie as a
mechanism that quickly identifies items in the routing table that are potential candidates
rather than a mechanism that finds an exact match.

Even if we consider the trie to be a mechanism that identifies potential matches,
another important detail is missing from our description. We have assumed that each
entry in a routing table has a unique binary prefix. In practice, however, the entries in
most routing tables do not have unique prefixes because routing tables contain a mix-
ture of general and specific routes for the same destination. For example, consider any
routing table that contains a network-specific route and a different route for one particu-
lar subnet of the same network. Or consider a routing table that contains both a
network-specific route and a special route for one host on that network. The binary pre-
fix of the network route is also a prefix of the subnet or host-specific route. Figure
10.15 provides an example.

Prefix Next Hop

128.10.0.0/16 10.0.0.2
128,10.2.0/24 10.0.0.4
128.10.3.0/24 10.1.0.5
128.10.4.0/24 10.0.0.6
128.10.4.3/32 10.0.0.3
128.10.5.0/24 10.0.0.6
128.10.5.1/32 10.0.0.3

Figure 10.15 An example set of routes without unique prefixes. The situation
occurs frequently because many routing tables contain a mix-
ture of general and specific routes for the same network.

To permit overlapping prefixes, the trie data structure described above must be
modified to follow the longest-match paradigm when selecting a route. To do so, one
must allow interior nodes to contain an address/mask pair, and modify the search algo-
rithm to check for a match at each node. A match that occurs later in the search (i.e., a
match that corresponds to a more specific route) must override any match that occurs
earlier because a later match corresponds to a longer prefix.

10.23.1 PATRICIA And Level Compressed Tries

Our description of binary tries also omits details related to optimization of lookup.
The most important involves ‘‘skipping’’ levels in the trie that do not distinguish
among routes. For example, consider a binary trie for the set of routes in Figure 10.15.
Because each route in the list begins with the same sixteen bits (i.e., the value

172 Classless And Subnet Address Extensions (CIDR) Chap. 10

10000000 00001010), a binary trie for the routes will only have one node at each of the
first sixteen levels below the root.

In this instance, it would be faster to examine all sixteen bits of a destination ad-
dress at once rather than extracting bits one at a time and using them to move through
the trie. Two modified versions of tries use the basic optimization. The first, a PATRI-
CIA tree, allows each node to specify a value to test along with a number of bits to
skip. The second, a level compressed trie, provides additional optimization by eliminat-
ing one or more levels in the trie that can be skipped along any path.

Of course, data structure optimizations represent a tradeoff. Although the optimi-
zations improve search speed, they require more computation when creating or modify-
ing a routing table. In most cases, however, such optimizations are justified because
one expects a routing table to be modified much less frequently than it is searched.

10.24 CIDR Blocks Reserved For Private Networks

Chapter 4 stated that the IETF had designated a set of prefixes to be reserved for
use with private networks. As a safeguard, reserved prefixes will never be assigned to
networks in the global Internet. Collectively, the reserved prefixes are known as private
addresses or nonroutable addresses. The latter term arises because routers in the global
Internet understand that the addresses are reserved; if a datagram destined to one of the
private addresses is accidentally routed onto the global Internet, a router in the Internet
will be able to detect the problem.

In addition to blocks that correspond to classful addresses, the set of reserved IPv4
prefixes contains a CIDR block that spans multiple classes. Figure 10.16 lists the
values in CIDR notation along with the dotted decimal value of the lowest and highest
addresses in the block. The last address block listed, /69.254/ 16, is unusual because it
is used by systems that autoconfigure IP addresses.

Prefix Lowest Address Highest Address
10/8 10.0.0.0 10.255.255.255
172.16/12 172.16.0.0 172.31.255.255
192.168/16 192.168.0.0 192.168.255.255
169.254/16 169.254.0.0 169.254.255.255

Figure 10.16 The prefixes reserved for use with private internets not connect-
ed to the global Internet. If a datagram sent to one of these ad-
dresses accidentally reaches the Internet, an error will result.

Sec. 10.25 Summary 173
10.25 Summary

The original IP address scheme assigns a unique prefix to each physical network.
This chapter examined five techniques that have been invented to conserve IP addresses.
The first technique uses transparent routers to extend the address space of a single net-
work, usually a WAN, to include hosts on an attached local network. The second tech-
nique, called proxy ARP, arranges for a router to impersonate computers on another
physical network by answering ARP requests on their behalf. Proxy ARP is useful only
on networks that use ARP for address resolution, and only for ARP implementations
that do not complain when multiple internet addresses map to the same hardware ad-
dress. The third technique, a TCP/IP standard called subnet addressing, allows a site to
share a single IP network address among multiple physical networks. All hosts and
routers connected to networks using subnetting must use a modified routing scheme in
which each routing table entry contains a subnet mask. The modified scheme can be
viewed as a generalization of the original routing algorithm because it handles special
cases like default routes or host-specific routes. The fourth technique allows a point-
to-point link to remain unnumbered (i.e., have no IP prefix).

The fifth technique, known as classless addressing (CIDR), represents a major shift
in IP technology. Instead of adhering to the original network classes, classless address-
ing allows the division between prefix and suffix to occur on an arbitrary bit boundary.
CIDR allows the address space to be divided into blocks, where the size of each block
is a power of two. One of the main motivations for CIDR arises from the desire to
combine multiple class C prefixes into a single supernet block. Because classless ad-
dresses are not self-identifying like the original classful addresses, CIDR requires signi-
ficant changes to the algorithms and data structures used by IP software on hosts and
routers to store and look up routes. Many implementations use a scheme based on the
binary trie data structure.

FOR FURTHER STUDY

The standard for subnet addressing comes from Mogul [RFC 950] with updates in
Braden [RFC 1122]. Clark [RFC 932], Karels [RFC 936}, Gads [RFC 940], and Mogul
[RFC 917] all contain early proposals for subnet addressing schemes. Mogul [RFC
922] discusses broadcasting in the presence of subnets. Postel [RFC 925] considers the
use of proxy ARP for subnets. Atallah and Comer [1998] presents a provably optimal
algorithm for variable-length subnet assignment. Carl-Mitchell and Quarterman [RFC
1027] discusses using proxy ARP to implement transparent subnet routers. Rekhter and
Li [RFC 1518] specifies classless IP address allocation. Fuller, Li, Yu, and Varadhan
[RFC 1519] specifies CIDR routing and supernetting. Rekhter et. al. [RFC 1918] speci-
fies address prefixes reserved for private networks. Knuth [1973] describes the PATRI-
CIA data structure.

174 Classless And Subnet Address Extensions (CIDR) Chap. 10

EXERCISES

10.1 If routers using proxy ARP use a table of host addresses to decide whether to answer
ARP requests, the routing table must be changed whenever a new host is added to one of
the networks. Explain how to assign IP addresses so hosts can be added without chang-
ing tables. Hint: think of subnets.

10.2 Although the standard allows all-0’s to be assigned as a subnet number, some vendors’
software does not operate correctly. Try to assign a zero subnet at your site and see if
the route is propagated correctly.

10.3 Can transparent routers be used with local area networks like the Ethernet? Why or why
not?

104 Show that proxy ARP can be used with three physical networks that are interconnected
by two routers.

10.5 Consider a fixed subnet partition of a class B network number that will accommodate at
least 76 networks. How many hosts can be on each network?

10.6 Does it ever make sense to subnet a class C network address? Why or why not?

10.7 A site that chose to subnet their class B address by using the third octet for the physical
net was disappointed that they could not accommodate 255 or 256 networks. Explain.

10.8 Design a subnet address scheme for your organization assuming that you have one class
B address to use.

10.9 Is it reasonable for a single router to use both proxy ARP and subnet addressing? If so,
explain how. If not, explain why.

10.10 Argue that any network using proxy ARP is vulnerable to ‘‘spoofing’” (i.e., an arbitrary
machine can impersonate any other machine).

10.11 Can you devise a (nonstandard) implementation of ARP that supports normal use, but
prohibits proxy ARP?

10.12 One vendor decided to add subnet addressing to its IP software by allocating a single
subnet mask used for all IP network addresses. The vendor modified its standard IP
routing software to make the subnet check a special case. Find a simple example in
which this implementation cannot work correctly. (Hint: think of a multi-homed host.)

10.13 Characterize the (restricted) situations in which the subnet implementation discussed in
the previous exercise will work correctly.

10.14 Read the standard to find out more about broadcasting in the presence of subnets. Can
you characterize subnet address assignments that allow one to specify a broadcast ad-
dress for all possible subnets?

10.15 The standard allows an arbitrary assignment of subnet masks for networks that comprise
a subnetted IP address. Should the standard restrict subnet masks to cover contiguous
bits in the address? Why or why not?

10.16 Find an example of variable length subnet assignments and host addresses that produces
address ambiguity. :

10.17 Carefully consider default routing in the presence of subnets. What can happen if a

packet arrives destined for a nonexistent subnet?

Exercises 175

10.18

10.19
10.20
10.21

10.22

10.23

Compare architectures that use subnet addressing and routers to interconnect multiple
Ethernets to an architecture that uses bridges as described in Chapter 2. Under what cir-
cumstances is one architecture preferable to the other?

Consider a site that chooses to subnet a class B network address, but decides that some
physical nets will use 6 bits of the local portion to identify the physical net while others
will use 8. Find an assignment of host addresses that makes destination addresses ambi-
guous.

The subnet routing algorithm in Figure 10.8 uses a sequential scan of entries in the rout-
ing table, allowing a manager to place host-specific routes before network-specific or
subnet-specific routes. Invent a data structure that achieves the same flexibility but uses
hashing to make the lookup efficient. [This exercise was suggested by Dave Mills.]
Although much effort has been expended on making routers operate quickly, software
for classless route lookup still runs slower than the hashing schemes used with classful
lookup. Investigate data structures and lookup algorithms that operate faster than a
binary trie.

A binary trie uses one bit to select among two descendants at each node. Consider a trie
that uses two bits to select among four descendants at each nodc. Under what conditions
does such a trie make lookup faster? Slower?

If all Internet service providers use classless addressing and assign subscribers numbers
from their block of addresses, what problem occurs when a subscriber changes from one
provider to another?

11

Protocol Layering

11.1 Introduction

Previous chapters review the architectural foundations of internetworking, describe
how hosts and routers forward Internet datagrams, and present mechanisms used to map
IP addresses to physical network addresses. This chapter considers the structure of the
software found in hosts and routers that carries out network communication. It presents
the general principle of layering, shows how layering makes Internet Protocol software
easier to understand and build, and traces the path of datagrams through the protocol
software- they encounter when traversing a TCP/IP internet.

11.2 The Need For Multiple Protocols

We have said that protocols allow one to specify or understand communication
without knowing the details of a particular vendor’s network hardware. They are to
computer communication what programming languages are to computation. It should
be apparent by now how closely the analogy fits. Like assembly language, some proto-
cols describe communication across a physical network. For example, the details of the
Ethernet frame format, network access policy, and frame error handling comprise a pro-
tocol that describes communication on an Ethernet. Similarly, like a high-level
language, the Internet Protocol specifies higher-level abstractions (e.g., IP addressing,
datagram format, and the concept of unreliable, connectionless delivery).

Complex data communication systems do not use a single protocol to handle all
transmission tasks. Instead, they require a set of cooperative protocols, sometimes
called a protocol family or protocol suite. To understand why, think of the problems
that arise when machines communicate over a data network:

177

178 Protocol Layering Chap. 11

® Hardware failure. A host or router may fail either because the hardware fails or
because the operating system crashes. A network transmission link may fail or acciden-
tally be disconnected. The protocol software needs to detect such failures and recover
from them if possible.

® Network congestion. Even when all hardware and software operates correctly,
networks have finite capacity that can be exceeded. The protocol software needs to ar-
range ways that a congested machine can suppress further traffic.

® Packet delay or loss. Sometimes, packets experience extremely long delays or
are lost. The protocol software needs to learn about failures or adapt to long delays.

® Data corruption. Electrical or magnetic interference or hardware failures can
cause transmission errors that corrupt the contents of transmitted data. Protocol
software needs to detect and recover from such errors.

® Data duplication or inverted arrivals. Networks that offer multiple routes may
deliver data out of sequence or may deliver duplicates of packets. The protocol
software needs to reorder packets and remove any duplicates.

Taken together, all the problems seem overwhelming. It is difficult to understand
how to write a single protocol that will handle them all. From the analogy with pro-
gramming languages, we can see how io conquer the complexity. Program translation
has been partitioned into four conceptual subproblems identified with the software that
handles each subproblem: compiler, assembler, link editor, and loader. The division
makes it possible for the designer to concentrate on one subproblem at a time, and for
the implementor to build and test each piece of software independently. We will see
that protocol software is partitioned similarly.

Two final observations from our programming language analogy will help clarify
the organization of protocols. First, it should be clear that pieces of translation software
must agree on the exact format of data passed between them. For example, the data
passed from a compiler to an assembler consists of a program defined by the assembly
programming language. The translation process involves multiple representations. The
analogy holds for communication software because multiple protocols define the
representations of data passed among communication software modules. Second, the
four parts of the translator form a linear sequence in which output from the compiler be-
comes input to the assembler, and so on. Protocol software also uses a linear sequence.

11.3 The Conceptual Layers Of Protocol Software

Think of the modules of protocol software on each machine as being stacked verti-
cally into layers, as in Figure 11.1. Each layer takes responsibility for handling one
part of the problem.

Sec. 11.3 The Conceptual Layers Of Protacol Software 179

< Sender > < Feceiver >
Layer n Layer n
Layer 2 Layer 2
Layer 1 Layer 1

Network)

Figure 11.1 The conceptual organization of protocol software in layers.

Conceptually, sending a message from an application program on one machine to
an application program on another means transferring the message down through suc-
cessive layers of protocol software on the sender’s machine, forwarding the message
across the network, and transferring the message up through successive layers of proto-
col software on the receiver’s machine.

In practice, the protocol software is much more complex than the simple model of
Figure 11.1 indicates. Each layer makes decisions about the correctness of the message
and chooses an appropriate action based on the message type or destination address.
For example, one layer on the receiving machine must decide whether to keep the mes-
sage or forward it to another machine. Another layer must decide which application
program should receive the message.

To understand the difference between the conceptual organization of protocol
software and the implementation details, consider the comparison shown in Figure 11.2.
The conceptual diagram in Figure 11.2a shows an Internet layer between a high level
protocol layer and a network interface layer. The realistic diagram in Figure 11.2b
shows that the TP software may communicate with multiple high-level protocol modules
and with multiple network interfaces.

Although a diagram of conceptual protocol layering does not show all details, it
does help explain the general concept. For example, Figure 1.3 shows the layers of
protocol software used by a message that traverses three networks. The diagram shows
only the network interface and Internet Protocol layers in the routers because only those
layers are needed to receive. route, and send datagrams. We understand that any
machine attached to two networks must have two network interface modules, even
though the conceptual layering diagram shows only a single network interface layer in
each machine.

180 Protocol Layering Chap. 11
Conceptual Layers Software Organization
High Level Protocol 1 Protocol 2 Protocol 3

Protocol Layer — l —

Internet
Protocol Layer 1P Module

Network — | T
Interface Layer Interface 1 Interface 2 Interface 3

(a) (b)

Figure 11.2 A comparison of (a) conceptual protocol layering and (b) a real-
istic view of software organization showing multiple network in-
terfaces below IP and multiple protocols above it.

As Figure 11.3 shows, a sender on the original machine transmits a message which
the IP layer places in a datagram and sends across network /. On intermediate routers,
the datagram passes up to the IP layer which sends it back out again (on a different net-
work). Only when it reaches the final destination machine, does IP extract the message
and pass it up to higher layers of protocol software.

other...

IP Layer

Interface

IP Layer

Interface

IP Layer

Interface

other...

IP Layer

Interface

Net2) o

Figure 11.3 The path of a message traversing the Internet from the sender
through two intermediate routers to the receiver. Intermediate

routers only send the datagram to the IP software layer.

Sec. 11.4 Functionality Of The Layers 181
11.4 Functionality Of The Layers

Once the decision has been made to partition the communication problem and or-
ganize the protocol software into modules that each handle one subproblem, the ques-
tion arises: ‘‘what functionality should reside in each module?’’ The question is not
easy to answer for several reasons. First, given a set of goals and constraints governing
a particular communication problem, it is possible to choose an organization that will
optimize protocol software for that problem. Second, even when considering general
network-level services such as reliable transport, it is possible to choose from among
fundamentally distinct approaches to solving the problem. Third, the design of network
(or internet) architecture and the organization of the protocol software are interrelated;
one cannot be designed without the other.

11.4.1 1SO 7-Layer Reference Model

Two ideas about protocol layering dominate the field. The first, based on early
work done by the International Organization for Standardization (ISO), is known as
1SO’s Reference Model of Open System Interconnection, often referred to as the ISO
model. The ISO model contains 7 conceptual layers organized as Figure 11.4 shows.

Layer Functionality
7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
(Hardware Interface)
1 Physical Hardware
Connection

Figure 11.4 The ISO 7-layer reference model for protocol software.

182 Protocol Layering Chap. 11

The ISO model, built to describe protocols for a single network, does not contain a
specific layer for internetwork routing in the same way TCP/IP protocols do.

11.5 X.25 And Its Relation To The ISO Model

Although it was designed to provide a conceptual model and not an implementa-
tion guide, the ISO layering scheme has been the basis for several protocol implementa-
tions. Among the protocols commonly associated with the ISO model, the suite of pro-
tocols known as X.25 is probably the best known and most widely used. X.25 was es-
tablished as a recommendation of the International Telecommunications Union (ITU),
formerly the CCITT, an organization that recommends standards for international tele-
phone services. X.25 has been adopted by public data networks, and became especially
popular in Europe. Considering X.25 will help explain ISO layering.

In the X.25 view, a network operates much like a telephone system. An X.25 net-
work is assumed to consist of complex packet switches that contain the intelligence
needed to route packets. Hosts do not attach directly to communication wires of the
network. Instead each host attaches to one of the packet switches using a serial com-
munication line. In one sense, the connection between a host and an X.25 packet
switch is a miniature network consisting of one serial link. The host must follow a
complicated procedure to transfer packets onto the network.

® Physical Layer. X.25 specifies a standard for the physical interconnection
between host computers and network packet switches, as well as the procedures used to
transfer packets from one machine to another. In the reference model, layer / specifies
the physical interconnection including electrical characteristics of voltage and current.
A corresponding protocol, X.21, gives the details used by public data networks.

® Data Link Layer. The layer 2 portion of the X.25 protocol specifies how data
travels between a host and the packet switch to which it connects. X.25 uses the term
frame to refer to a unit of data as it passes between a host and a packet switch (it is im-
portant to understand that the X.25 definition of frame differs slightly from the way we
have defined it). Because raw hardware delivers only a stream of bits, the layer 2 pro-
tocol must define the format of frames and specify how the two machines recognize
frame boundaries. Because transmission errors can destroy data, the layer 2 protocol in-
cludes error detection (e.g., a frame checksum). Finally, because transmission is unreli-
able, the layer 2 protocol specifies an exchange of acknowledgements that allows the
two machines to know when a frame has been transferred successfully.

One commonly used layer 2 protocol, named the High Level Data Link Communi-
cation, is best known by its acronym, HDLC. Several versions of HDLC exist, with the
most recent known as HDLC/LAPB. It is important to remember that successful
transfer at layer 2 means a frame has been passed to the network packet switch for
delivery; it does not guarantee that the packet switch accepted the packet or was able to
route it.

® Network Layer. The ISO reference model specifies that the third layer contains
functionality that completes the definition of the interaction between host and network.

Sec. 11.5 X.25 And Its Relation To The 1SO Model 183

Called the network or communication subnet layer, this layer defines the basic unit of
transfer across the network and includes the concepts of destination addressing and rout-
ing. Remember that in the X.25 world, communication between host and packet switch
is conceptually isolated from the traffic that is being passed. Thus, the network might
allow packets defined by layer 3 protocols to be larger than the size of frames that can
be transferred at layer 2. The layer 3 software assembles a packet in the form the net-
work expects and uses layer 2 to transfer it (possibly in pieces) to the packet switch.
Layer 3 must also respond to network congestion problems.

e Transport Layer. Layer 4 provides end-to-end reliability by having the destina-
tion host communicate with the source host. The idea here is that even though lower
layers of protocols provide reliable checks at each transfer, the end-to-end layer double
checks to make sure that no machine in the middle failed.

e Session Layer. Higher layers of the ISO model describe how protocol software
can be organized to handle all the functionality needed by application programs. The
ISO committee considered the problem of remote terminal access so fundamental that
they assigned layer 5 to handle it. In fact, the central service offered by early public
data networks consisted of terminal to host interconnection. The carrier provides a spe-
cial purpose host computer called a Packet Assembler And Disassembler (PAD) on the
network with dialup access. Subscribers, often travelers who carry their own computer
and modern, dial up the local PAD, make a network connection to the host with which
they wish to communicate, and log in. Many carriers choose to make using the network
for long distance communication less expensive than direct dialup.

e Presentation Layer. 1SO layer 6 is intended to include functions that many ap-
plication programs ileed when using the network. Typical examples include standard
routines that compress text or convert graphics images into bit streams for transmission
across a network. For example an ISO standard known as Abstract Syntax Notation 1
(ASN.I), provides a representation of data that application programs use. One of the
TCP/IP protocols, SNMP, also uses ASN.1 to represent data.

e Application Layer. Finally, ISO layer 7 includes application programs that use
the network. Examples include electronic mail or file transfer programs. In particular,
the ITU has devised a protocol for electronic mail known as the X.400 standard. In
fact, the ITU and ISO worked jointly on message handling systems; the ISO version is
called MOTIS.

11.5.1 The TCP/IP 5-Layer Reference Model

The second major layering model did not arise from a standards committee, but
came instead from research that led to the TCP/IP protocol suite. With a little work, the
ISO model can be stretched to~describe the TCP/IP layering scheme, but the underlying
assumptions are different enough to warrant distinguishing the two.

184 Protocol Layering Chap. 11

Broadly speaking, TCP/IP software is organized into five conceptual layers — four
software layers that build on a fifth layer of hardware. Figure 11.5 shows the conceptu-
al layers as well as the form of data as it passes between them.

Conceptual Layer Objects Passed
Between Layers
Application
- Messages or Streams
Transport
- Transport Protocol Packets
Internet
- IP Datagrams
Network Interface
_—— | - Network-Specific Frames

Figure 11.5 The 4 conceptual layers of TCP/IP software above the hardware
layer, and the form of objects passed between layers. The layer
labeled network interface is sometimes called the data link layer.

® Application Layer. At the highest layer, users invoke application programs that
access services available across a TCP/IP internet. An application interacts with one of
the transport layer protocols to send or receive data. Each application program chooses
the style of transport needed, which can be either a sequence of individual messages or
a continuous stream of bytes. The application program passes data in the required form
to the transport layer for delivery.

® Transport Layer. The primary duty of the transport layer is to provide com-
munication from one application program to another. Such communication is often
called end-to-end. The transport layer may regulate flow of information. It may also
provide reliable transport, ensuring that data arrives without error and in sequence. To
do so, transport protocol software arranges to have the receiving side send back ack-
nowledgements and the sending side retransmit lost packets. The transport software
divides the stream of data being transmitted into small pieces (sometimes called pack-
ets) and passes each packet along with a destination address to the next layer for
transmission.

Although Figure 11.5 uses a single block to represent the application layer, a gen-
eral purpose computer can have multiple application programs accessing an internet at
one time. The transport layer must accept data from several user programs and send it
to the next lower layer. To do so, it adds additional information to each packet, includ-

Sec. 11.5 X.25 And Its Relation To The ISO Model 185

ing codes that identify which application program sent it and which application program
should receive it, as well as a checksum. The receiving machine uses the checksum to
verify that the packet arrived intact, and uses the destination code to identify the appli-
cation program to which it should be delivered.

o Internet Layer. As we have already seen, the Internet layer handles communica-
tion from one machine to another. It accepts a request to send a packet from the tran-
sport layer along with an identification of the machine to which the packet should be
sent. It encapsulates the packet in an IP datagram, fills in the datagram header, uses the
routing algorithm to determine whether to deliver the datagram directly or send it to a
router, and passes the datagram to the appropriate network interface for transmission.
The Internet layer also handles incoming datagrams, checking their validity, and uses
the routing algorithm to decide whether the datagram should be processed locally or for-
warded. For datagrams addressed to the local machine, software in the internet layer
deletes the datagram header, and chooses from among several transport protocols the
one that will handle the packet. Finally, the Internet layer sends and receives ICMP er-
ror and control messages as needed.

e Network Interface Layer. The lowest layer TCP/IP software comprises a net-
work interface layer, responsible for accepting IP datagrams and transmitting them over
a specific network. A network interface may consist of a device driver (e.g., when the
network is a local area network to which the machine attaches directly) or a complex
subsystem that uses its own data link protocol (e.g., when the network consists of pack-
et switches that communicate with hosts using HDLC).

11.6 Differences Between ISO And internet Layering

There are two subtle and important differences between the TCP/IP layering
scheme and the ISO/X.25 scheme. The first difference revolves around the focus of at-
tention on reliability, while the second involves the location of intelligence in the
overall system.

11.6.1 Link-Level vs. End-To-End Reliability

One major difference between the TCP/IP protocols and the X.25 protocols lies in
their approaches to providing reliable data transfer services. In the X.25 model, proto-
col software detects and handles errors at all layers. At the link level, complex proto-
cols guarantee that the transfer between a host and the packet switch to which it con-
nects will be correct. Checksums accompany each piece of data transferred, and the re-
ceiver acknowledges each piece of data received. The link layer protocol includes
timeout and retransmission algorithms that prevent data loss and provide automatic
recovery after hardware fails and restarts.

Successive layers of X.25 provide reliability of their own. At layer 3, X.25 also
provides error detection and recovery for packets transferred onto the network, using
checksums as well as timeout and retransmission techniques. Finally, layer 4 must pro-

186 Protocol Layering Chap. t1

vide end-to-end reliability, having the source correspond with the ultimate destination to
verify delivery.

In contrast to such a scheme, TCP/IP bases its protocol layering on the idea that re-
liability is an end-to-end problem. The architectural philosophy is simple: construct the
internet so it can handle the expected load, but allow individual links or machines to
lose data or corrupt it without trying to repeatedly recover. In fact, there is little or no
reliability in most TCP/IP network interface layer software. Instead, the transport layer
handles most error detection and recovery problems.

The resulting freedom from interface layer verification makes TCP/IP software
much easier to understand and implement correctly. Intermediate routers can discard
datagrams that become corrupted because of transmission errors or that cannot be
delivered. They can discard datagrams when the arrival rate exceeds machine capacity,
and can reroute datagrams through paths with shorter or longer delay without informing
the source or destination.

Having unreliable links means that some datagrams do not arrive. Detection and
recovery of datagram loss is carried out between the source host and the ultimate desti-
nation and is, therefore, called end-10-end verification. The end-to-end software located
in the TCP/IP transport layer uses checksums, acknowledgements, and timeouts to con-
trol transmission. Thus, unlike the connection-oriented X.25 protocol layering, the
TCP/IP software focuses most of its reliability control in one layer.

11.6.2 Locus of Intelligence and Decision Making

Another difference between the X.25 model and the TCP/IP model emerges when
one considers the locus of authority and control. As a general rule, networks using
X.25 adhere to the idea that a network is a utility that provides a transport service. The
vendor that offers the service controls network access and monitors traffic to keep
records for accounting and billing. The network vendor also handles problems like
routing, flow control, and acknowledgements internally, making transfers reliable. This
view leaves little that the hosts can (or need to) do. In short, the network is a complex,
independent system to which one can attach relatively simple host computers; the hosts
themselves participate minimally in the network operation.

In contrast, TCP/IP requires hosts to participate in almost all of the network proto-
cols. We have already mentioned that hosts actively implement end-to-end error detec-
tion and recovery. They also participate in routing because they must choose a router
when sending datagrams, and they participate in network control because they must
handle ICMP control messages. Thus, when compared to an X.25 network, a TCP/IP
internet can be viewed as a relatively simple packet delivery system to which intelligent
hosts attach.

Sec. 11.7 The Protocol Layering Principle 187
11.7 The Protocol Layering Principle

Independent of the particular layering scheme used or the functions of the layers,
the operation of layered protocols is based on a fundamental idea. The idea, called the
layering principle, can be summarized succinctly:

Layered protocols are designed so that layer n at the destination re-
ceives exactly the same object sent by layer n at the source.

The layering principle explains why layering is such a powerful idea. It allows the
protocol designer to focus attention on one layer at a time, without worrying about how
other layers perform. For example, when building a file transfer application, the
designer considers only two copies of the application program executing on two com-
puters, and concentrates on the messages they need to exchange for file transfer. The
designer assumes that the application on one host receives exactly the data that the ap-
plication on the other host sends.

Figure 11.6 illustrates how the layering principle works:

Host A Host B
Application Application
identical
ikl e E
message
Transport Transport
identical
i -
packet
Internet Internet
identical
il e -
datagram
Network Network
Interface identical Interface

“7 frame T~ ":Z/

Figure 11.6 The path of a message as it passes from an application on one
host to an application on another. Layer n on host B receives
exactly the same object that layer n on host A sent.

188 Protocol Layering Chap. 11
11.7.1 Layering in a TCP/IP Internet Environment

Our statement of the layering principle is somewhat vague, and the illustration in
Figure 11.6 skims over an important issue because it fails to distinguish between
transfers from source to ultimate destination and transfers across multiple networks.
Figure 11.7 illustrates the distinction, showing the path of a message sent from an appli-
cation program on one host to an application on another through a router.

As the figure shows, message delivery uses two separate network frames, one for
the transmission from host A to router R, and another from router R to host B. The net-
work layering principle states that the frame delivered to R is identical to the frame sent
by host A. By contrast, the application and transport layers deal with end-to-end issues
and are designed so the software at the source communicates with its peer at the ulti-
mate destination. Thus, the layering principle states that the packet received by the
transport layer at the ultimate destination is identical to the packet sent by the transport
layer at the original source.

Host A Host B
Application identical Application
PP ____——"‘ message T~~~ - PP
Transport identical Transport
P __,——"' packet ~"‘~~,__ P
i Router R T
Internet Internet Internet
identical identical
e -~~~ datagram "~~~ =) e -~ 7 datagram =~ " - -
L
Network Network Network
Interface identical Interface identical Interface

“ frame "~~~ -=" frame ">~
Physical Net 1 Physical Net 2
Figure 11.7 The layering principle when a router is used. The frame

delivered to router R is exactly the frame sent from host A, but
differs from the frame sent between R and B.

Sec. 11.7 The Protocol Layering Principle 189

It is easy to understand that in higher layers, the layering principle applies across
end-to-end transfers, and that at the lowest layer it applies to a single machine transfer.
It is not as easy to see how the layering principle applies to the Internet layer. On one
hand, we have said that hosts attached to an internet should view it as a large, virtual
network, with the IP datagram taking the place of a network frame. In this view, da-
tagrams travel from original source to ultimate destination, and the layering principle
guarantees that the ultimate destination receives exactly the datagram that the original
source sent. On the other hand, we know that the datagram header contains fields, like
a time to live counter, that change each time the datagram passes through a router.
Thus, the ultimate destination will not receive exactly the same datagram as the source
sent. We conclude that although most of the datagram stays intact as it passes across an
internet, the layering principle only applies to datagrams across single machine
transfers. To be accurate, we should not view the Internet layer as providing end-to-end
service.

11.8 Layering In The Presence Of Network Substructure

Recall from Chapter 2 that some wide area networks contain multiple packet
switches. For example, a WAN can consist of routers that connect to a local network at
each site as well as to other routers using leased serial lines. When a router receives a
datagram, it either delivers the datagram to its destination on the local network, or
transfers the datagram across a serial line to another router. The question arises: *‘How
do the protocols used on serial lines fit into the TCP/IP layering scheme?”’ The answer
depends on how the designer views the serial line interconnections.

From the perspective of IP, the set of point-to-point connections among routers can
either function like a set of independent physical networks, or they can function collec-
tively like a single physical network. In the first case, each physical link is treated ex-
actly like any other network in the internet. The link is assigned a unique network
number, and the two hosts that share the link each have a unique IP address assigned
for their connectiont. Routes are added to the IP routing table as they would be for any
other network. A new software module is added at the network interface layer to con-
trol the new link hardware, but no substantial changes are made to the layering scheme.
The main disadvantage of the independent network approach is that it proliferates net-
work numbers (one for each connection between two machines) and causes routing
tables to be larger than necessary. Both Serial Line IP (SLIP) and the Point to Point
Protocol (PPP) treat each serial link as a separate network.

The second approach to accommodating point-to-point connections avoids assign-
ing multiple IP addresses to the physical wires. Instead, it treats all the connections col-
lectively as a single, independent IP network with its own frame format, hardware ad-
dressing scheme, and data link protocols. Routers that use the second approach need
only one IP network number for all point-to-point connections.

Using the single network approach means extending the protocol layering scheme
to add a new intranetwork routing layer between the network interface layer and the

+The only exception arises when using the anonymous network scheme described in Chapter 10; leaving
the link unnumbered does not change the layering.

190 Protocol Layering Chap. 11

hardware devices. For machines with only one point-to-point connection, an additional
layer seems unnecessary. To see why it is needed, consider a machine with several
physical point-to-point connections, and recall from Figure 11.2 how the network inter-
face layer is divided into multiple software modules that each control one network. We
need to add one network interface for the new point-to-point network, but the new inter-
face must control multiple hardware devices. Furthermore, given a datagram to send,
the new interface must choose the correct link over which the datagram should be sent.
Figure 11.8 shows the organization.

The Internet layer software passes to the network interface all datagrams that
should be sent on any of the point-to-point connections. The network interface passes
them to the intranet routing module that must further distinguish among multiple physi-
cal connections and route the datagram across the correct one.

The programmer who designs the intranet routing software determines exactly how
the software chooses a physical link. Usually, the algorithm relies on an intranet rout-
ing table. The intranet routing table is analogous to the internet routing table in that it
specities a mapping of destination address to route. The table contains pairs of entries,
(D, L), where D is a destination host address and L specifies the physical line used to
reach that destination.

Conceptual Layer Software Organization
Protoco! 1 Protocol 2 Protocol 3
Transport
\ l
Internet IP Module
Network Y | T
interface Interface 1 Interface 2 Interface 3
Point-To-Point
Intranet
(Intranet)
(a) (b)

Figure 11.8 (a) Conceptual position of an intranet protocol for point-to-point
connections when IP treats them as a single IP network, and (b)
detailed diagram of corresponding software modules. Each ar-
row corresponds to one physical device.

The difference between an internet routing table and an intranet routing table is
that intranet routing tables are quite small. They only contain routing information for
hosts directly attached to the point-to-point network. The reason is simple: the Internet
layer maps an arbitrary destination address to a specific router address before passing

Sec. 11.8 Layering In The Presence Of Network Substructure 191

the datagram to a network interface. The intranet layer is asked only to distinguish
among machines on a single point-to-point network.

11.9 Two Important Boundaries in The TCP/IP Model

The conceptual protocol layering includes two boundaries that may not be obvious:
a protocol address boundary that separates high-level and low-level addressing, and an
operating system boundary that separates the system from application programs.

11.9.1 High-Level Protocol Address Boundary

Now that we have seen the layering of TCP/IP software, we can be precise about
an idea introduced in Chapter 8: a conceptual boundary partitions software that uses
low-level (physical) addresses from software that uses high-level (IP) addresses. As
Figure 11.9 shows, the boundary occurs between the network interface layer and the In-
ternet layer. That is,

Application programs as well as all protocol software from the Inter-
net layer upward use only IP addresses; the network interface laver
handles physical addresses.

Thus, protocols like ARP belong in the network interface layer. They are not part of IP.

Conceptual Layer Boundary
Application
PP Software outside the operating system
Transport Software inside the operating system
Internet
Only IP addresses used
Network Physical addresses used
Interface
Hardware

Figure 11.9 The relationship between conceptual layering and the boundaries
for operating system and high-level protocol addresses.

192 Protocol Layering Chap. 11
11.9.2 Operating System Boundary

Figure 11.9 shows another important boundary as well, the division between
software that is generally considered part of the operating system and software that is
not. While each implementation of TCP/IP chooses how to make the distinction, many
follow the scheme shown. Because they lie inside the operating system, passing data
between lower layers of protocol software is much less expensive than passing it
between an application program and a transport layer. Chapter 20 discusses the prob-
lem in more detail and describes an example of the interface an operating system might
provide.

11.10 The Disadvantage Of Layering

We have said that layering is a fundamental idea that provides the basis for proto-
col design. It allows the designer to divide a complicated problem into subproblems
and solve each one independently. Unfortunately, the software that results from strict
layering can be extremely inefficient. As an example, consider the job of the transport
layer. It must accept a stream of bytes from an application program, divide the stream
into packets, and send each packet across the internet. To optimize transfer, the tran-
sport layer should choose the largest possible packet size that will allow one packet to
travel in one network frame. In particular, if the destination machine attaches directly
to one of the same networks as the source, only one physical net will be involved in the
transfer, so the sender can optimize packet size for that network. If the software
preserves strict layering, however, the transport layer cannot know how the Internet
module will route traffic or which networks attach directly. Furthermore, the transport
layer will not understand the datagram or frame formats nor will it be able to determine
how many octets of header will be added to a packet. Thus, strict layering will prevent
the transport layer from optimizing transfers.

Usually, implementors relax the strict layering scheme when building protocol
software. They allow information like route selection and network MTU to propagate
upward. When allocating buffers, they often leave space for headers that will be added
by lower layer protocols and may retain headers on incoming frames when passing them
to higher layer protocols. Such optimizations can make dramatic improvements in effi-
ciency while retaining the basic layered structure.

11.11 The Basic Idea Behind Multiplexing And Demultiplexing

Communication protocols use techniques of multiplexing and demultiplexing
throughout the layered hierarchy. When sending a message, the source computer in-
cludes extra bits that encode the message type, originating program, and protocols used.

Sec. 11.11 The Basic Idea Behind Multiplexing And Demultiplexing 193

Eventually, all messages are placed into network frames for transfer and combined into
a stream of packets. At the receiving end, the destination machine uses the extra infor-
mation to guide processing.

Consider an example of demultiplexing shown in Figure 11.10.

P Module ARP Module RARP Module

A

Demultiplexing Based
On Frame Type

< Frame Arrives

~——

Figure 11.10 Demultiplexing of incoming frames based on the type field
found in the frame header.

The figure illustrates how software in the net.vork interface layer uses the frame type to
choose a procedure to handle the incoming frame. We say that the network interface
demultiplexes the frame based on its type. To make such a choice possible, software in
the source machine must set the frame type field before transmission. Thus, each
software module that sends frames uses the type field to specify frame contents.

Multiplexing and demultiplexing occur at almost every protocol layer. For exam-
ple, after the network interface demultiplexes frames and passes those frames that con-
tain IP datagrams to the IP module, the IP software extracts the datagram and demulti-
plexes further based on the transport protocol. Figure 11.11 demonstrates demultiplex-
ing at the Internet layer.

194 Protocol Layering Chap. 11

ICMP Protocol UDP Protocol TCP Protocol

IP Module

Datagram Arrive}
—/

Figure 11.11 Demultiplexing at the Internet layer. IP software chooses an ap-
propriate procedure to handle a datagram based on the protocol
type field in the datagram header.

To decide how to handle a datagram, internet software examines the header of a da-
tagram and selects a protocol handler based on the datagram type. In the example, the
possible datagram types are: ICMP, which we have already examined und UDP, and
TCP, which we will examine in later chapters.

11.12 Summary

Protocols are the standards that specify how data is represented when being
transferred from one machine to another. Protocols specify how the transfer occurs,
how errors are detected, and how acknowledgements are passed. To simplify protocol
design and implementation, communication problems are segregated into subproblems
that can be solved independently. Each subproblem is assigned a separate protocol.

The idea of layering is fundamental because it provides a conceptual framework
for protocol design. In a layered model, each layer handles one part of the communica-
tion problem and usually corresponds to one protocol. Protocols follow the layering
principle, which states that the software implementing layer n on the destination
machine receives exactly what the software implementing layer n on the source machine
sends.

We examined the 5-layer Internet reference model as well as the older ISO 7-layer
reference model. In both cases, the layering model provides only a conceptual frame-
work for protocol software. The ITU X.25 protocols follow the ISO reference model
and provide an example of reliable communication service offered by a commercial util-
ity, while the TCP/IP protocols provide an example of a different layering scheme.

In practice, protocol software uses multiplexing and demultiplexing to distinguish
among multiple protocols within a given layer, making protocol software more complex
than the layering model suggests.

For Further Study 195

FOR FURTHER STUDY

Postel [RFC 791] provides a sketch of the Internet Protocol layering scheme. and
Clark [RFC 817] discusses the effect of layering on implementations. Saltzer, Reed,
and Clark [1984] argues that end-to-end verification is important. Chesson {1987}
makes the controversial argument that layering produces intolerably bad network
throughput. Volume 2 of this text examines layering in detail, and shows an example
implementation that achieves efficiency by compromising strict layering and passing
pointers between layers.

The 1SO protocol documents [1987a] and [1987b] describe ASN.1 in detail. Sun
[RFC 1014] describes XDR, an example of what might be called a TCP/IP presentation
protocol. Clark [1985] discusses passing information upward through layers.

EXERCISES

11.1 Study the ISO layering mode!l in more detail. How well does the model describe com-
munication on a local area network like an Ethernet?

11.2 Build a case that TCP/IP is moving toward a six-layer protocol architecture that includes
a presentation layer. (Hint: various programs use the XDR protocol, Courier-Diemdi,
ASN.1.)

113 Do you think any single presentation protocol will eventually emerge that replaces all
others? Why or why not?

114 Compare and contrast the tagged data format used by the ASN.1 presentation scheme
with the untagged format used by XDR. Characterize situations in which one is better
than the other.

11.5 Find out how a UNIX system uses the mbuf structure to make layered protocol software
efficient.

11.6 Read about the System V UNIX streams mechanism. How does it help make protocol
implementation easier? What is its chief disadvantage?

12

User Datagram Protocol
(UDP)

12.1 Introduction

Previous chapters describe a TCP/IP internet capable of transferring IP datagrams
among host computers, where each datagram is routed through the internet based on the
destination’s IP address. At the Internet Protocol layer, a destination address identifies
a host computer; no further distinction is made regarding which user or which applica-
tion program will receive the datagram. This chapter extends the TCP/IP protocol suite
by adding a mechanism that distinguishes among destinations within a given host, al-
lowing multiple application programs executing on a given computer to send and re-
ceive datagrams independently.

12.2 Identifying The Ultimate Destination

The operating systems in most computers support multiprogramming, which means
they permit multiple application programs o execute simultaneously. Using operating
system jargon, we refer to each executing program as a process, task, application pro-
gram, or a user level process; the systems are called multitasking systems. It may seem
natural to say that a process is the ultimate destination for a message. However, speci-
fying that a particular process on a particular machine is the ultimate destination for a
datagram is somewhat misleading. First, because processes arc created and destroyed
dynamically, senders seldom know enough to identify a process on another machine.
Second, we would like to be able to replace processes that receive datagrams without

197

198 User Datagram Protocol (UDP) Chap. 12

informing all senders (e.g., rebooting a machine can change all the processes, but
senders should not be required to know about the new processes). Third, we need to
identify destinations from the functions they implement without knowing the process
that implements the function (e.g., to allow a sender to contact a file server without
knowing wiich process on the destination machine implements the file server function).
More important, in systems that allow a single process to handle two or more functions,
it is essential that we arrange a way for a process to decide exactly which function the
sender desires.

Instead of thinking of a process as the ultimate destination, we will imagine that
each machine contains a set of abstract destination points called protocol ports. Each
protocol port is identified by a positive integer. The local operating system provides an
interface mechanism that processes use to specify a port or access it.

Most operating systems provide synchronous access to ports. From a particular
process’s point of view, synchronous access means the computation stops during a port
access operation. For example, if a process attempts to extract data from a port before
any data arrives, the operating system temporarily stops (blocks) the process until data
arrives. Once the data arrives, the operating system passes the data to the process and
restarts it. In general, ports are buffered, so data that arrives before a process is ready to
accept it will not be lost. To achieve buffering, the protocol software located inside the
operating system places packets that arrive for a particular protocol port in a (finite)
queue until a process extracts them.

To communicate with a foreign port, a sender needs to know both the IP address of
the destination machine and the protocol port number of the destination within that
machine. Each message must carry the number of the destination port on the machine
to which the message is sent, as well as the source port number on the source machine
to which replies should be addressed. Thus, it is possible for any process that receives
a message to reply to the sender.

12.3 The User Datagram Protocol

In the TCP/IP protocol suite, the User Datagram Protocol or UDP provides the
primary mechanism that application programs use to send datagrams to other applica-
tion programs. UDP provides protocol ports used to distinguish among multiple pro-
grams executing on a single machine. That is, in addition to the data sent, each UDP
message contains both a destination port number and a source port number, making it
possible for the UDP software at the destination to deliver the message to the correct re-
cipient and for the recipient to send a reply.

UDP uses the underlying Internet Protocol to transport a message from one
machine to another, and provides the same unreliable, connectionless datagram delivery
semantics as IP. It does not use acknowledgements to make sure messages arrive, it
does not order incoming messages, and it does not provide feedback to control the rate
at which information flows between the machines. Thus, UDP messages can be lost,
duplicated, or arrive out of order. Furthermore, packets can arrive faster than the reci-
pient can process them. We can summarize:

Sec. 12.3 The User Datagram Protocol 199

The User Datagram Protocol (UDP) provides an unreliable connec-
tionless delivery service using IP to rtransport messages between
machines. It uses IP to carry messages, but adds the ability to distin-
guish among multiple destinations within a given host computer.

An application program that uses UDP accepts full responsibility for handling the
problem of reliability, including message loss, duplication, delay, out-of-order delivery,
and loss of connectivity. Unfortunately, application programmers often ignore these
problems when designing software. Furthermore, because programmers often test net-
work software using highly reliable, low-delay local area networks, testing may not ex-
pose potential failures. Thus, many application programs that rely on UDP work well
in a local environment but fail in dramatic ways when used in a larger TCP/IP-internet.

12.4 Format Of UDP Messages

Each UDP message is called a user datagram. Conceptually, a user datagram con-
sists of two parts: a UDP header and a UDP data area. As Figure 12.1 shows, the
header is divided into four 16-bit fields that specify the port from which the message
was sent, the port to which the message is destined, the message length, and a UDP
checksum.

UDP SCURCE PORT UDP DESTINATION PORT
UDP MESSAGE LENGTH UDP CHECKSUM
DATA

Figure 12.1 The format of fields in a UDP datagram.

The SOURCE PORT and DESTINATION PORT fields contain the 16-bit UDP pro-
tocol port numbers used to demultiplex datagrams among the processes waiting to re-
ceive them. The SOURCE PORT is optional. When used, it specifies the port to which
replies should be sent; if not used, it should be zero.

The LENGTH field contains a count of octets in the UDP datagram, including the
UDP header and the user data. Thus, the minimum value for LENGTH is eight, the
length of the header alone.

The UDP checksum is optional and need not be used at all; a value of zero in the
CHECKSUM field means that the checksum has not been computed. The designers
chose to make the checksum optional to allow implementations to operate with little

200 User Datagram Protocol (UDP) Chap. 12

computational overhead when using UDP across a highly reliable local area network.
Recall, however, that IP does not compute a checksum on the data portion of an IP da-
tagram. Thus, the UDP checksum provides the only way to guarantee that data has ar-
rived intact and should be used.

Beginners often wonder what happens to UDP messages for which the computed
checksum is zero. A computed value of zero is possible because UDP uses the same
checksum algorithm as IP: it divides the data into 16-bit quantities and computes the
one’s complement of their one’s complement sum. Surprisingly, zero is not a problem
because one’s complement arithmetic has two representations for zero: all bits set to
zero or all bits set to one. When the computed checksum is zero, UDP uses the
representation with all bits set to one.

12.5 UDP Pseudo-Header

The UDP checksum covers more information than is present in the UDP datagram
alone. To compute the checksum, UDP prepends a pseudo-header to the UDP da-
tagram, appends an octet of zeros to pad the datagram to an exact multiple of 16 bits,
and computes the checksum over the entire object. The octet used for padding and the
pseudo-header are nor transmitted with the UDP datagram, nor are they included in the
length. To compute a checksum, the software first stores zero in the CHECKSUM field,
then accumulates a 16-bit one’s complement sum of the entire object, including the
pseudo-header, UDP header, and user data.

The purpose of using a pseudo-header is to verify that the UDP datagram has
reached its correct destination. The key to understanding the pseudo-header lies in real-
izing that the correct destination consists of a specific machine and a specific protocol
port within that machine. The UDP header itself specifies only the protocol port
number. Thus, to verify the destination, UDP on the sending machine computes a
checksum that covers the destination IP address as well as the UDP datagram. At the
ultimate destination, UDP software verifies the checksum using the destination IP ad-
dress obtained from the header of the IP datagram that carried the UDP message. If the
checksums agree, then it must be true that the datagram has reached the intended desti-
nation host as well as the correct protocol port within that host.

The pseudo-header used in the UDP checksum computation consists of 12 octets of
data arranged as Figure 12.2 shows. The fields of the pseudo-header labeled SOURCE
IP ADDRESS and DESTINATION IP ADDRESS contain the source and destination IP
addresses that will be used when sending the UDP message. Field PROTO contains the
IP protocol type code (/7 for UDP), and the field labeled UDP LENGTH contains the
length of the UDP datagram (not including the pseudo-header). To verify the check-
sum, the receiver must extract these fields from the IP header, assemble them into the
pseudo-header format, and recompute the checksum. '

Sec. 12.5 UDP Pseudo-Header 201

0 8 16 31
SOURCE IP ADDRESS
DESTINATION IP ADDRESS
ZERO PROTO | UDP LENGTH

Figure 12.2 The 12 octets of the pseudo-header used during UDP checksum
computation.

12.6 UDP Encapsulation And Protocol Layering

UDP provides our first example of a transport protocol. In the layering model of
Chapter 11, UDP lies in the layer above the Internet Protocol layer. Conceptually, ap-
plication programs access UDP, which uses IP to send and receive datagrams as Figure

12.3 shows.

Conceptual Layering

Application

User Datagram (UDP)

Internet (IP)

Network Interface

Figure 12.3 The conceptual layering of UDP between application programs
and IP.

Layering UDP above IP means that a complete UDP message, including the UDP
header and data, is encapsulated in an IP datagram as it travels across an internet as Fig-

ure 12.4 shows.

202 User Datagram Protocol (UDP) Chap. 12

UDP
HEADER UDP DATA AREA

P
HEADER IP DATA AREA

FRAME

HEADER FRAME DATA AREA

Figure 12.4 A UDP datagram encapsulated in an I[P datagram for transmis-
sion across an internet. The datagram is further encapsulated in
a frame each time it travels across a single network.

For the protocols we have examined, encapsulation means that UDP prepends a
header to the data that a user sends and passes it to IP. The IP layer prepends a header
to what it receives from UDP. Finally, the network interface layer embeds the datagram
in a frame before sending it from one machine to another. The format of the frame
depends on the underlying network technology. Usually, network frames include an ad-
ditional header.

On input, a packet arrives at the lowest layer of network software and begins its
ascent through successively higher layers. Each layer removes one header before pass-
ing the message on, so that by the time the highest level passes data to the receiving
process, all headers have been removed. Thus, the outermost header corresponds to the
lowest layer of protocol, while the innermost header corresponds to the highest protocol
layer. When considering how headers are inserted and removed, it is important to keep
in mind the layering principle. In particular, observe that the layering principle applies
to UDP, so the UDP datagram received from IP on the destination machine is identical
to the datagram that UDP passed to [P on the source machine. Also, the data that UDP
delivers to a user process on the receiving machine will be exactly the data that a user
process passed to UDP on the sending machine.

The division of duties among various protocol layers is rigid and clear:

The IP laver is responsible only for transferring data between a pair
of hosts on an internet, while the UDP layer is responsible only for
differentiating among multiple sources or destinations within one host.

Thus, only the IP header identifies the source and destination hosts; only the UDP layer
identifies the source or destination ports within a host.

Sec. 12.7 Layering And The UDP Checksum Computation 203
12.7 Layering And The UDP Checksum Computation

Observant readers will have noticed a seeming contradiction between the layering
rules and the UDP checksum computation. Recall that the UDP checksum includes a
pseudo-header that has fields for the source and destination IP addresses. It can be ar-
gued that the destination IP address must be known to the user when sending a UDP da-
tagram, and the user must pass it to the UDP layer. Thus, the UDP layer can obtain the
destination [P address without interacting with the IP layer. However, the source IP ad-
dress depends on the route IP chooses for the datagram, because the IP source address
identifies the network interface over which the datagram is transmitted. Thus, UDP
cannot know a source IP address unless it interacts with the IP layer.

We assume that UDP software asks the IP layer to compute the source and (possi-
bly) destination IP addresses, uses them to construct a pseudo-header, computes the
checksum, discards the pseudo-header, and then passes the UDP datagram to IP for
transmission. An alternative approach that produces greater efficiency arranges to have
the UDP layer encapsulate the UDP datagram in an IP datagram, obtain the source ad-
dress from IP, store the source and destination addresses in the appropriate fields of the
datagram header, compute the UDP checksum, and then pass the IP datagram to the IP
layer, which only needs to fill in the remaining IP header fields.

Does the strong interaction between UDP and IP violate our basic premise that
layering reflects separation of functionality? Yes. UDP has been tightly integrated with
the IP protocol. It is clearly a compromise of the pure separation, made for entirely
practical reasons. We are willing to overlook the layering violation because it is impos-
sible to fully identify a destination application program without specifying the destina-
tion machine, and we want to make the mapping between addresses used by UDP and
those used by IP efficient. One of the exercises examines this issue from a different
point of view, asking the reader to consider whether UDP should be separated from IP.

12.8 UDP Multiplexing, Demultiplexing, And Ports

We have seen in Chapter 11 that software throughout the layers of a protocol
hierarchy must multiplex or demultiplex among multiple objects at the next layer. UDP
software provides another example of multiplexing and demultiplexing. It accepts UDP
datagrams from many application programs and passes them to IP for transmission, and
it accepts arriving UDP datagrams from IP and passes each to the appropriate applica-
tion program.

Conceptually, all multiplexing and demultiplexing between UDP software and ap-
plication programs occur through the port mechanism. In practice, each application pro-
gram must negotiate with the operating system to obtain a protocol port and an associat-
ed port number before it can send a UDP datagramt. Once the port has been assigned,
any datagram the application program sends through the port will have that port number
in its UDP SOURCE PORT field.

tFor now, we will describe ports abstractly; Chapter 22 provides an example of the operating system
primitives used to create and use ports.

204 User Datagram Protocol (UDP) Chap. 12

While processing input, UDP accepts incoming datagrams from the IP software
and demultiplexes based on the UDP destination port, as Figure 12.5 shows.

Port 1 Port 2 Port 3

Z
UDP: Demultiplexing
Based On Port

UDP Datagram arrives

IP Layer

Figure 12.5 Example of demultiplexing one layer above IP. UDP uses the
UDP destination port number to select an appropriate destination
port for incoming datagrams.

The easiest way to think of a UDP port is as a queue. In most implementations, when
an application program negotiates with the operating system to use a given port, the
operating system creates an internal queue that can hold arriving messages. Often, the
application can specify or change the queue size. When UDP receives a datagram, it
checks to see that the destination port number matches one of the ports currently in use.
If not, it sends an ICMP port unreachable error message and discards the datagram. If
a'match is found, UDP enqueues the new datagram at the port where an application pro-
gram can access it. Of course, an error occurs if the port is full, and UDP discards the
incoming datagram.

12.9 Reserved And Available UDP Port Numbers

How should protocol port numbers be assigned? The problem is important because
two computers need to agree on port numbers before they can interoperate. For exam-
ple, when computer A wants to obtain a file from computer B, it needs to know what
port the file transfer program on computer B uses. There are two fundamental ap-
proaches to port assignment. The first approach uses a central authority. Everyone
agrees to allow a central authority to assign port numbers as needed and to publish the
list of all assignments. Then all software is built according to the list. This approach is
sometimes called universal assignment, and the port assignments specified by the au-
thority are called well-known port assignments.

Sec. 12.9 Reserved And Available UDP Port Numbers 205

The second approach to port assignment uses dynamic binding. In the dynamic
binding approach, ports are not globally known. Instead, whenever a program needs a
port, the network software assigns one. To learn about the current port assignment on
another computer, it is necessary to send a request that asks about the current port as-
signment (e.g., What port is the file transfer service using?). The target machine replies
by giving the correct port number to use.

The TCP/IP designers adopted a hybrid approach that assigns some port numbers a
priori, but leaves many available for local sites or application programs. The assigned
port numbers begin at low values and extend upward, leaving large integer values avail-
able for dynamic assignment. The table in Figure 12.6 lists some of the currently as-
signed UDP port numbers. The second column contains Internet standard assigned key-
words, while the third contains keywords used on most UNIX systems.

Decimal Keyword UNIX Keyword Description
0 - - Reserved
7 ECHO echo Echo
9 DISCARD discard Discard
11 USERS systat Active Users
13 DAYTIME daytime Daytime
15 - netstat Network status program
17 QUOTE qotd Quote of the Day
19 CHARGEN chargen Character Generator
37 TIME time Time
42 NAMESERVER name Host Name Server
43 NICNAME whois Who Is
53 DOMAIN nameserver Domain Name Server
67 BOOTPS bootps BOOTP or DHCP Server
68 BOOTPC bootpc BOOTP or DHCP Client
69 TFTP tftp Trivial File Transfer
88 KERBEROS kerberos Kerberos Security Service
111 SUNRPC sunrpc Sun Remote Procedure Call
123 NTP ntp Network Time Protocol
161 - snmp Simple Network Management Protocol
162 - snmp-trap SNMP traps
512 - biff UNIX comsat
513 - who UNIX rwho daemon
514 - syslog System log
525 - timed Time daemon

Figure 12.6 An illustrative sample of currently assigned UDP ports showing
the standard keyword and the UNIX equivalent; the list is not
exhaustive. To the extent possible, other transport protocols that
offer identical services use the same port numbers as UDP.

206 User Datagram Protocol (UDP) Chap. 12
12.10 Summary

Most computer systems permit multiple application programs to execute simultane-
ously. Using operating system jargon, we refer to each executing program as a process.
The User Datagram Protocol, UDP, distinguishes among multiple processes within a
given machine by allowing senders and receivers to add two 16-bit integers called pro-
tocol port numbers to each UDP message. The port numbers identify the source and
destination. Some UDP port numbers, called well known, are permanently assigned and
honored throughout the Internet (e.g., port 69 is reserved for use by the trivial file
transfer protocol TFTP described in Chapter 26). Other port numbers are available for
arbitrary application programs to use.

UDP is a thin protocol in the sense that it does not add significantly to the seman-
tics of IP. It merely provides application programs with the ability to communicate us-
ing IP’s unreliable connectionless packet delivery service. Thus, UDP messages can be
lost, duplicated, delayed, or delivered out of order; the application program using UDP
must handle these problems. Many programs that use UDP do not work correctly
across an internet because they fail to accommodate these conditions.

In the protocol layering scheme, UDP lies in the transport layer, above the Internet
Protocol layer and below the application layer. Conceptually, the transport layer is in-
dependent of the Internet layer, but in practice they interact strongly. The UDP check-
sum includes IP source and destination addresses, meaning that UDP software must in-
teract with IP software to find addresses before sending datagrams.

FOR FURTHER STUDY

Tanenbaum [1981] contains a tutorial comparison of the datagram and virtual cir-
cuit models of communication. Ball er. al. [1979] describes message-based systems
without discussing the message protocol. The UDP protocol described here is a stan-
dard for TCP/IP and is defined by Postel [RFC 768].

EXERCISES

12.1 Try UDP in your local environment. Measure the average transfer speed with messages
of 256, 512, 1024, 2048, 4096, and 8192 bytes. Can you explain the results (hint: what
is your network MTU)?

12.2 Why is the UDP checksum separate from the IP checksum? Would you object to a pro-
tocol that used a single checksum for the complete IP datagram including the UDP mes-
sage?

12.3 Not using checksums can be dangerous. Explain how a single corrupted ARP packet
broadcast by machine P can make it impossible to reach another machine, Q.

Exercises 207

124

12.5

12.6
12.7

12.8

12.9

12.10

Should the notion of multiple destinations identified by protocol ports have been built
into IP? Why, or why not?

Name Registry. Suppose you want to allow arbitrary pairs of application programs (o es-
tablish communication with UDP, but you do not wish to assign them fixed UDP port
numbers. Instead, you would like potential correspondents to be identified by a charac-
ter string of 64 or fewer characters. Thus, a program on machine A might want to com-
municate with the "funny-special-long-id" program on machine B (you can assume that a
process always knows the IP address of the host with which it wants to communicate).
Meanwhile, a process on machine C wants to communicate with the "comer's-own-
program-id” on machine A. Show that you only need to assign one UDP port to make
such communication possible by designing software on each machine that allows (a) a
local process to pick an unused UDP port ID over which it will communicate, (b) a local
process to register the 64-character name to which it responds, and (c) a foreign process
to use UDP to establish communication using only the 64-character name and destination
internet address.

Implement name registry software from the previous exercise.

What is the chief advantage of using preassigned UDP port numbers? The chief disad-
vantage?

What is the chief advantage of using protocol ports instead of process identifiers to
specify the destination within a machine?

UDP provides unreliable datagram communication because it does not guarantee delivery
of the message. Devise a reliable datagram protocol that uses timeouts and ack-
nowledgements to guarantee delivery. How much network overhead and delay does reli-
ability introduce?

Send UDP datagrams across a wide area network and measure the percentage lost and
the percentage reordered. Does the result depend on the time of day? The network
load? '

13

Reliable Stream Transport
Service (TCP)

13.1 Introduction

Previous chapters explore the unreliable connectionless packet delivery service that
forms the basis for all internet communication and the IP protocol that defines it. This
chapter introduces the second most important and well-known network-level service, re-
liable stream delivery, and the Transmission Control Protocol (TCP) that defines it.
We will see that TCP adds substantial functionality to the protocols already discussed.
but that its implementation is also substantially more complex.

Although TCP is presented here as part of the TCP/IP Internet protocol suite, it is
an independent, general purpose protocol that can be adapted for use with other delivery
systems. For example, because TCP makes very few assumptions about the underlying
network, it is possible to use it over a single network like an Ethernet, as well as over a
complex internet. In fact, TCP has been so popular that one of the International Organi-
zation for Standardization’s open systems protocols, TP-4, has been derived from it.

13.2 The Need For Stream Delivery

At the lowest level, computer communication networks provide unreliable packet
delivery. Packets can be lost or destroyed when transmission errors interfere with data,
when network hardware fails, or when networks become too heavily loaded to accom-
modate the load presented. Networks that route packets dynamically can deliver them
out of order, deliver them after a substantial delay, or deliver duplicates. Furthermore.

209

210 Reliable Stream Transport Service (TCP) Chap. 13

underlying network technologies may dictate an optimal packet size or pose other con-
straints needed to achieve efficient transfer rates.

At the highest level. application programs often need to send large volumes of data
from one computer to another. Using an unreliable connectionless delivery system for
large volume transfers becomes tedious and annoving. and it requires programmers to
build crror detection and recovery 1nto each application program. Because it is difficult
to design, understand. or modify software that correctly provides reliability, few appli-
cation programmers have the necessary technical background. As a consequence, one
goal of network protocol research has been to find general purpose solutions to the
problems of providing reliable stream delivery, making it possible for experts to build a
single instance of stream protocol software that all application programs use. Having a
single gencral purpose protocol helps isolate application programs from the details of
networking. and makes it possible to define a uniform interface for the stream transfer
service.

13.3 Properties Of The Reliable Delivery Service

The interface between application programs and the TCP/IP reliable delivery ser-
vice can be characterized by 5 features:

® Stream Orientation. When two application programs (user processes) transter
large volumes of data. we think of the data as a stream of bits, divided into 8-bit octets,
which are informally called byies. The stream delivery service on the destination
machine passes to the receiver exactly the same sequence of octets that the sender
passes 10 it on the source machine.

® Virtual Circuit Connection. Making a stream transfer is analogous to placing a
telephone call. Before transfer can start, both the sending and receiving application pro-
grams interact with their respective operating systems, informing them of the desire for
a stream transfer. Conceptually. one application places a *“call’” which must be accept-
ed by the other. Protocol software modules in the two operating systems communicate
by sending messages across an internet, verifying that the transfer is authorized, and that
both sides are ready. Once all details have been settled, the protocol modules inform
the application programs that a connection has been established and that transfer can be-
gin. During transfer, protocol software on the two machines continue to communicate
to verify that data is received correctly. If the communication fails for any reason (e.g.,
because network hardware along the path between the machines fails), both machines
detect the failure and report it to the appropriate application programs. We use the term
virtual circuit 1o describe such connections because although application programs view
the connection as a dedicated hardware circuit, the reliability is an illusion provided by
the stream delivery service.

® Buffered Transfer. Application programs send a data stream across the virtual
circuil by repeatedly passing data octets to the protocol software. When transferring
data, each application uses whatever size pieces it finds convenient, which can be as
small as a single octet. At the receiving end, the protocol software delivers octets from

Sec. 13.3 Properties Of The Reliabie Delivery Service 211

the data stream in exactly the same order they were sent, making them available to the
receiving application program as soon as they have been reccived and verified. The
protocol software is free to divide the stream into packets independent of the pieces the
application program transfers. To make wuisier more efficient and to minimize net-
work traftic. implementations usually collect enough data from a stream to fill a reason-
ably large datagram before transmitting it across an internet. Thus. even if the applica-
tion program generates the stream one octet at a time, transfer across an internet may be
quite efficient. Similarly, if the application program chooses to generate extremely
large blocks of data, the protocol software can choose to divide each block into smaller
pieces for transmission.

For those applications where data should be delivered even though it does not fill a
buffer. the stream service provides a push mechanism that applications use to force a
transfer. At the sending side, a push forces protocol software to transfer all data that
has been generated without waiting to fill a buffer. When it reaches the receiving side.
the push causes TCP to make the data available to the application without delay. The
reader should note, however, that the push function only guarantees that all data will be
transferred; it does not provide record boundaries. Thus, even when delivery is forced.
the protocol software may choose to divide the stream in unexpected ways.

e Unstructured Stream. It is important to understand that the TCP/IP stream ser-
vice does not honor structured data streams. For example. there is no way for a payroll
application to have the stream service mark boundaries between employee records. or to
identify the contents of the stream as being payroll data. Application programs using
the stream service must understand stream content and agree on stream format before
they initiate a connection.

e Full Duplex Connection. Connections provided by the TCP/IP stream service al-
Jow concurrent transfer in both directions. Such connections are called full duplex.
From the point of view of an application process, a full duplex connection consists of
two independent streams flowing in opposite directions, with no apparent interaction.
The stream service allows an application process to terminate flow in one direction
while data continues to flow in the other direction, making the connection half duplex.
The advantage of a full duplex connection is that the underlying protocol software can
send control information for one stream back to the source in datagrams carrying data in
the opposite direction. Such piggvbacking reduces network traftic.

13.4 Providing Reliability

We have said that the reliable stream delivery service guarantees to deiiver a
stream of data sent from one machine to another without duplication or data loss. The
question arises: “"How can protocol software provide reiiable transfer if the underlying
communication system offers only unreliable packet delivery?"” The answer is compli-
cated, but most reliable protocols use a single fundamental technique known as positive
acknowledgement with retransmission. The technique requires a recipient to communi-
cate with the source, sending back an acknowledgement (ACK) message as it receives

(5]
(89

Reliable Stream Transport Service (TCP) Chap. 13
data. The sender keeps a record of each packet it sends and waits for an acknowledge-
ment before sending the next packet. The sender also starts a timer when it sends a
packet and retransmits a packet if the timer expires before an acknowledgement arrives.

Figure 13.1 shows how the simplest positive acknowledgement protocol transfers
data.

Events At Sender Site Network Messages Events At Receiver Site

Send Packet 1 \

Receive ACK 1 /
Send Packet 2 \

Receive ACK 2 /

——m| Receive Packet 1
—1 Send ACK 1

—m! Receive Packet 2
_—1 Send ACK 2

Figure 13.1 A protocol using positive acknowledgement with retransmission
in which the sender awaits an acknowledgement for each packet
sent. Vertical distance down the figure represents increasing
time and diagonal lines across the middle represent network
packet transmission.

In the figure, events at the sender and receiver are shown on the left and right. Each di-
agonal line crossing the middle shows the transfer of one message across the network.

Figure 13.2 uses the same format diagram as Figure 13.1 to show what happens
when a packet is lost or corrupted. The.sender starts a timer after transmitting a packet.
When the timer expires, the sender assumes the packet was lost and retransmits it.

The final reliability problem arises when an underlying packet delivery system du-
plicates packets. Duplicates can also arise when networks experience high delays that
cause premature retransmission. Solving duplication requires careful thought because
both packets and acknowledgements can be duplicated. Usually, reliable protocols
detect duplicate packets by assigning each packet a sequence number and requiring the
receiver to remember which sequence numbers it has received. To avoid confusion
caused by delayed or duplicated acknowledgements, positive acknowledgement proto-
cols send sequence numbers back in acknowledgements, so the receiver can correctly
associate acknowledgements with packets.

Sec. 13.4 Providing Reliability 213

Events At Sender Site Network Messages Events At Receiver Site

Send Packet 1 Pucket lost

Start Timer \/

- = Packet should arrive
_ - - ACK should be sent

ACK would normally .-
arrive at this time

Timer Expires

Retransmit Packet 1

Start Timer \\
Receive Packet 1
Send ACK 1
Receive ACK 1

Cancel Timer

Figure 13.2 Timeout and retransmission that occurs when a packet is lost.
The dotted lines show the time that would be taken by the
transmission of a packet and its acknowledgement, if the packet
was not lost.

13.5 The Idea Behind Sliding Windows

Before examining the TCP stream service, we need to explore an additional con-
cept that underlies stream transmission. The concept, known as a sliding window,
makes stream transmission efficient. To understand the motivation for sliding windows,
recall the sequence of events that Figure 13.1 depicts. To achieve reliability, the sender
transmits a packet and then waits for an acknowledgement before transmitting another.
As Figure 13.1 shows, data only flows between the machines in one direction at any
time, even if the network is capable of simultaneous communication in both directions.
The network will be completely idle during times that machines delay responses (e.g.,
while machines compute routes or checksums). [f we imagine a network with high
transmission delays, the problem becomes clear:

A simple positive acknowledgement protocol wastes a substantial
amount of network bandwidth because it must delay sending a new
packet until it receives an acknowledgement for the previous packet.

The sliding window technique is a more complex form of positive acknowledge-
ment and retransmission than the simple method discussed above. Sliding window pro-
tocols use network bandwidth better because they allow the sender to transmit multiple
packets before waiting for an acknowledgement. The easiest way to envision sliding

214 Reliable Stream Transport Service (TCP) Chap. 13
window operation is to think of a sequence of packets to be transmitted as Figure 13.3

shows. The protocol places a small, fixed-size window on the sequence and transmits
all packets that lie inside the window.

initial window

(a)

window slides —

(b)

Figure 13.3 (a) A sliding window protocol with eight packets in the window,
and (b) The window sliding so that packet 9 can be sent when
an acknowledgement has been received for packet /. Only
unacknowledged packets are retransmitted.

We say that a packet is unacknowledged if it has been transmitted but no acknowledge-
ment has been received. Technically, the number of packets that can be unack-
nowledged at any given time is constrained by the window size and is limited to a
small, fixed number. For example, in a sliding window protocol with window size &,
the sender is permitted to transmit 8 packets before it receives an acknowledgement.

As Figure 13.3 shows, once the sender receives an acknowledgement for the first
packet inside the window, it *‘slides’’ the window along and sends the next packet. The
window continues to slide as long as acknowledgements are received.

The performance of sliding window protocols depends on the window size and the
speed at which the network accepts packets. Figure 13.4 shows an example of the
operation of a sliding window protocol when sending three packets. Note that the
sender transmits all three packets before receiving any acknowledgements.

With a window size of /, a sliding window protocol is exactly the same as our
simple positive acknowledgement protocol. By increasing the window size, it is possi-
ble to eliminate network idle time completely. That is, in the steady state, the sender
can transmit packets as fast as the network can transfer them. The main point is:

Because a well tuned sliding window protocol keeps the network com-
pletely saturated with packets, it obiains substantially higher
throughput than a simple positive acknowledgement protocol.

Sec. 13.5 The I1dea Behind Sliding Windows 215

Conceptually, a sliding window protocol always remembers which packets have
been acknowledged and keeps a separate timer for each unacknowledged packet. If a
packet is lost, the timer expires and the sender retransmits that packet. When the sender
slides its window. it moves past all acknowledged packets. At the receiving end, the
protocol software keeps an analogous window, accepting and acknowledging packets as
they arrive. Thus, the window partitions the sequence of packets into three sets: those
packets to the left of the window have been successfully transmitted, received, and ack-
nowledged; those packets to the right have not yet been transmitted: and those packets
that lie in the window are being transmitted. The lowest humbered packet in the win-
dow is the first packet in the sequence that has not been acknowledged.

Events At Sender Site Network Messages Events At Receiver Site
Send Packet 1 \
Receive Packet 1
Send Packet 2 s:ﬁg“ﬂ;l(a: €

Receive Packet 2
Send Packet 3 Send ACK 2

Receive Packet 3

Receive ACK 1 Send ACK 3

Receive ACK 2

Receive ACK 3

Figure 13.4 An example of three packets transmitted using a sliding window
protocol. The key concept is that the sender can transmit all
packets in the window without waiting for an acknowledgement.

13.6 The Transmission Control Protocol

Now that we understand the principle of sliding windows, we can examine the reli-
able stream service provided by the TCP/IP Internet protocol suite. The service is de-
fined by the Transmission Control Protocol, or TCP. The reliable stream service is so
important that the entire protocol suite is referred to as TCP/IP. It is important to
understand that:

TCP is a communication protocol, not a piece of software.
The difference between a protocol and the software that implements it is analogous

to the difference between the definition of a programming language and a compiler. As
in the programming language world, the distinction between definition and implementa-

216 Reliable Stream Transport Service (TCP) Chap. 13

tion sometimes becomes blurred. People encounter TCP software much more frequent-
ly than they encounter the protocol specification, so it is natural to think of a particular
implementation as the standard. Nevertheless. the reader should try to distinguish
between the two.

Exactly what does TCP provide? TCP is complex, so there is no simple answer.
The protocol specifies the format of the data and acknowledgements that two computers
exchange to achieve a reliable transfer, as well as the procedures the computers use to
ensure that the data arrives correctly. It specifies how TCP software distinguishes
among multiple destinations on a given machine, and how communicating machines re-
cover from errors like lost or duplicated packets. The protocol also specifies how two
computers initiate a TCP stream transfer and how they agree when it is complete.

It is also important to understand what the protocol does not include. Although the
TCP specification describes how application programs use TCP in general terms, it does
not dictate the details of the interface between an application program and TCP. That
is, the protocol documentation only discusses the operations TCP supplies: it does not
specify the exact procedures application programs invoke to access these operations.
The reason for leaving the application program interface unspecified is flexibility. In
particular, because programmers usually implement TCP in the computer’s operating
system, they need to employ whatever interface the operating system supplies. Allow-
ing the implementor flexibility makes it possible to have a single specification for TCP
that can be used to build software for a variety of machines.

Because TCP assumes little about the underlying communication system, TCP can
be used with a variety of packet delivery systems, including the IP datagram delivery
service. For example, TCP can be implemented to use dialup telephone lines, a local
area network. a high speed fiber optic network, or a lower speed long haul network. In
fact, the large variety of delivery systems TCP can use is one of its strengths.

13.7 Ports, Connections, And Endpoints

Like the User Datagram Protocol (UDP) presented in Chapter 12, TCP resides
above IP in the protocol layering scheme. Figure 13.5 shows the conceptual organiza-
tion. TCP allows multiple application programs on a given machine to communicate
concurrently, and it demultiplexes incoming TCP traffic among application programs.
Like the User Datagram Protocol, TCP uses protocol port numbers to identify the ulti-
mate destination within a machine. Each port is assigned a small integer used to identi-
fy itt.

+Although both TCP and UDP use integer port identifiers starting at / to identify ports, there is no confu-
sion between them because an incoming IP datagram identifies the protocol being used as well as the port
number.

Sec. 13.7 Ports, Connections, And Endpoints 217

Conceptual Layering

Application

Reliable Stream (TCP) | User Datagram (UDP)

Internet (IP)

Network Interface

Figure 13.5 The conceptual layering of UDP and TCP above IP. TCP pro-
vides a reliable stream service, while UDP provides an unreli-
able datagram delivery service. Application programs use both.

When we discussed UDP ports, we said to think of each port as a queue into which
protocol software places arriving datagrams. TCP ports are much more complex be-
cause a given port number does not correspond to a single object. Instead, TCP has
been built on the connection abstraction, in which the objects to be identified are virtual
circuit connections, not individual ports. Understanding that TCP uses the notion of
connections is crucial because it helps explain the meaning and use of TCP port
numbers:

TCP uses the connection, not the protocol port, as its fundamental
abstraction; connections are identified by a pair of endpoints.

Exactly what are the ‘‘endpoints’’ of a connection? We have said that a connec-
tion consists of a virtual circuit between two application programs, so it might be natur-
al to assume that an application program serves as the connection ‘‘endpoint.”’ It is not.
Instead, TCP defines an endpoint to be a pair of integers (host, port), where host is the
IP address for a host and port is a TCP port on that host. For example, the endpoint
(128.10.2.3, 25) specifies TCP port 25 on the machine with IP address 128.10.2.3.

Now that we have defined endpoints, it will be easy to understand connections.
Recall that a connection is defined by its two endpoints. Thus, if there is a connection
from machine (/8.26.0.36) at MIT to machine (/28.10.2.3) at Purdue University, it
might be defined by the endpoints:

(18.26.0.36, 1069) and (128.10.2.3, 25).

218 Reliable Stream Transport Service (TCP) Chap. 13

Meanwhile, another connection might be in progress from machine (/28.9.0.32) at the
Information Sciences Institute to the same machine at Purdue, identified by its end-
points:

(/28.9.0.32. 1184) and (128.10.2.3, 53).

So far, our examples of connections have been straightforward because the ports
used at all endpoints have been unique. However, the connection abstraction allows
multiple connections to share an endpoint. For example, we could add another connec-
tion to the two listed above from machine (/28.2.254.7139) at CMU to the machine at
Purdue:

(128.2.254.139, 1184) and (128.10.2.3, 53).

It might seem strange that two connections can use the TCP port 53 on machine
128.10.2.3 simultaneously, but there is no ambiguity. Because TCP associates incom-
ing messages with a connection instead of a protocol port, it uses both endpoints to
identify the appropriate connection. The important idea to remember is:

Because TCP identifies a connection by a pair of endpoints, a given
TCP port number can be shared by multiple connections on the same
machine.

From a programmer’s point of view, the connection abstraction is significant. It
means a programmer can devise a program that provides concurrent service to multiple
connections simultaneously without needing unique local port numbers for each connec-
tion. For example, most systems provide concurrent access to their electronic mail ser-
vice, allowing multiple computers to send them electronic mail concurrently. Because
the program that accepts incoming mail uses TCP to communicate, it only needs to use
one local TCP port even though it allows muitiple connections to proceed concurrently.

13.8 Passive And Active Opens

Unlike UDP, TCP is a connection-oriented protocol that requires both endpoints to
agree to participate. That is, before TCP traffic can pass across an internet, application
programs at both ends of the connection must agree that the connection is desired. To
do so, the application program on one end performs a passive open function by contact-
ing its operating system and indicating that it will accept an incoming connection. At
that time, the operating system assigns a TCP port number for its end of the connection.
The application program at the other end must then contact its operating system using
an active open request to establish a connection. The two TCP software modules com-
municate to establish and verify a connection. Once a connection has been created, ap-
plication programs can begin to pass data; the TCP software modules at each end ex-
change messages that guarantee reliable delivery. We will return to the details of estab-
lishing connections after examining the TCP message format.

Sec. 13.9 Segments, Streams. And Sequence Numbers 219
13.9 Segments, Streams, And Sequence Numbers

TCP views the data stream as a sequence of octets or bytes that it divides into seg-
ments for transmission. Usually, each segment travels across an internet in a single 1P
datagram.

TCP uses a specialized sliding window mechanism to solve two important prob-
lems: efficient transmission and flow control. Like the sliding window protocol
described earlier, the TCP window mechanism makes it possible to send multiple seg-
ments before an acknowledgement arrives. Doing so increases total throughput because
it keeps the network busy. The TCP form of a sliding window protoco! also solves the
end-to-end flow control problem, by allowing the receiver to restrict transmission until
it has sufficient buffer space to accommodate more data.

The TCP sliding window mechanism operates at the octet level, not at the segment
or packet level. Octets of the data stream are numbered sequentially, and a sender
keeps three pointers associated with every connection. The pointers define a sliding
window as Figure 13.6 illustrates. The first pointer marks the left of the sliding win-
dow, separating octets that have been sent and acknowledged from octets yet to be ack-
nowledged. A second pointer marks the right of the sliding window and defines the
highest octet in the sequence that can be sent before more acknowledgements are re-
ceived. The third pointer marks the boundary inside the window that separates those
octets that have already been sent from those octets that have not been sent. The proto-
col software sends all octets in the window without delay. so the boundary inside the
window usually moves from left to right quickly.

current window

1 213 4 5 6 7 8 9|10 M

1 ? 1

Figure 13.6 An example of the TCP sliding window. Octets through 2 have
been sent and acknowledged, octets 3 through 6 have been sent
but not acknowledged, octets 7 though 9 have not been sent but
will be sent without delay, and octets 10 and higher cannot be
sent until the window moves.

We have described how the sender’s TCP window slides along and mentioned that
the receiver must maintain a similar window to piece the stream together again. It is
important to understand, however, that because TCP connections are full duplex, two
transfers proceed simultaneously over each connection, one in each direction. We think
of the transfers as completely independent because at any time data can flow across the
connection in one direction, or in both directions. Thus, TCP software at each end

220 Reliable Stream Transport Service (TCP) Chap. 13

maintains two windows per connection (for a total of four), one slides along the data
stream being sent, while the other slides along as data is received.

13.10 Variable Window Size And Flow Control

One difference between the TCP sliding window protocol and the simplified slid-
ing window protocol presented earlier occurs because TCP allows the window size to
vary over time. Each acknowledgement, which specifies how many octets have been
received, contains a window advertisement that specifies how many additional octets of
data the receiver is prepared to accept. We think of the window advertisement as speci-
fying the receiver’s current buffer size. In response to an increased window advertise-
ment, the sender increases the size of its sliding window and proceeds to send octets
that have not been acknowledged. In response to a decreased window advertisement,
the sender decreases the size of its window and stops sending octets beyond the boun-
dary. TCP software should not contradict previous advertisements by shrinking the
window past previously acceptable positions in the octet stream. Instead, smaller adver-
tisements accompany acknowledgements, so the window size changes at the time it
slides forward.

The advantage of using a variable size window is that it provides flow control as
well as reliable transfer. To avoid receiving more data than it can store, the receiver
sends smaller window advertisements as its buffer fills. In the extreme case, the re-
ceiver advertises a window size of zero to stop all transmissions. Later, when buffer
space becomes available, the receiver advertises a nonzero window size to trigger the
flow of data againt.

Having a mechanism for flow control is essential in an internet environment, where
machines of various speeds and sizes communicate through networks and routers of
various speeds and capacities. There are two independent flow problems. First, internet
protocols need end-to-end flow control between the source and ultimate destination.
For example, when a minicomputer communicates with a large mainframe, the mini-
computer needs to regulate the influx of data, or protocol software would be overrun
quickly. Thus, TCP must implement end-to-end flow control to guarantee reliable
delivery. Second, internet protocols need a flow control mechanism that allows inter-
mediate systems (i.e., routers) to control a source that sends more traffic than the
machine can tolerate.

When intermediate machines become overloaded, the condition is called conges-
tion, and mechanisms to solve the problem are called congestion control mechanisms.
TCP uses its sliding window scheme to solve the end-to-end flow control problem; it
does not have an explicit mechanism for congestion control. We will see later, howev-
er, that a carefully programmed TCP implementation can detect and recover from
congestion while a poor implementation can make it worse. In particular, although a
carefully chosen retransmission scheme can help avoid congestion, a poorly chosen
scheme can exacerbate it.

tThere are two exceptions to transmission when the window size is zero. First, a sender is allowed to
transmit a segment with the urgent bit set to inform the receiver that urgent data is available. Second, to avoid
a potential deadlock that can arise if a nonzero advertisement is lost after the window size reaches zero, the
sender probes a zero-sized window periodically.

Sec. 13.11 TCP Segment Format 221
13.11 TCP Segment Format

The unit of transfer between the TCP software on two machines is called a seg-
ment. Segments are exchanged to establish connections, transfer data, send ack-
nowledgements, advertise window sizes, and close connections. Because TCP uses pig-
gybacking, an acknowledgement traveling from machine A to machine B may travel in
the same segment as data traveling from machine A to machine B, even though the ack-
nowledgement refers to data sent from B to At. Figure 13.7 shows the TCP segment
format.

0 4 10 16 24 31
SOURCE PORT DESTINATION PORT
SEQUENCE NUMBER
ACKNOWLEDGEMENT NUMBER

HLEN | RESERVED | CODE BITS WINDOW
CHECKSUM URGENT POINTER
OPTIONS (IF ANY) PADDING
DATA

Figure 13.7 The format of a TCP segment with a TCP header followed by
data. Segments are used to establish connections as well as to
carry data and acknowledgements.

Each segment is divided into two parts, a header followed by data. The header,
known as the TCP header, carries the expected identification and control information.
Fields SOURCE PORT and DESTINATION PORT contain the TCP port numbers that
identify the application programs at the ends of the connection. The SEQUENCE
NUMBER field identifies the position in the sender’s byte stream of the data in the seg-
ment. The ACKNOWLEDGEMENT NUMBER field identifies the number of the octet
that the source expects to receive next. Note that the sequence number refers to the
stream flowing in the same direction as the segment, while the acknowledgement
number refers to the stream flowing in the opposite direction from the segment.

The HLEN% field contains an integer that specifies the length of the segment
header measured in 32-bit multiples. It is needed because the OPTIONS field varies in
length, depending on which options have been included. Thus, the size of the TCP
header varies depending on the options selected. The 6-bit field marked RESERVED is
reserved for future use.

+1n practice, piggybacking does not usually occur because most applications do not send data in both
directions simultaneously.
+The specification says the HLEN field is the offser of the data area within the segment.

2
1]
(39

Reliable Stream Transport Service (TCP) Chap. 13

Some segments carry only an acknowledgement while some carry data. Others
carry requests to establish or close a connection. TCP software uses the 6-bit field la-
beled CODE BITS to determine the purpose and contents of the segment. The six bits
tell how to interpret other fields in the header according to the table in Figure 13.8.

Bit (left to right) Meaning if bit set to 1
URG Urgent pointer field is valid
ACK Acknowledgement field is valid
PSH This segment requests a push
RST Reset the connection
SYN Synchronize sequence numbers
FIN Sender has reached end of its byte stream

Figure 13.8 Bits of the CODE field in the TCP header.

TCP software advertises how much data it is willing to accept every time it sends a
segment by specifying its buffer size in the WINDOW field. The field contains a 16-bit
unsigned integer in network-standard byte order. Window advertisements provide
another example of piggybacking because they accompany all segments, including those
carrying data as well as those carrying only an acknowledgement.

13.12 Out Of Band Data

Although TCP is a stream-oriented protocol, it is sometimes important for the pro-
gram at one end of a connection to send data our of band, without waiting for the pro-
gram at the other end of the connection to consume octets already in the stream. For
example, when TCP is used for a remote login session, the user may decide to send a
keyboard sequence that interrupts or aborts the program at the other end. Such signals
are most often needed when a program on the remote machine fails to operate correctly.
The signals must be sent without waiting for the program to read octets already in the
TCP stream (or one would not be able to abort programs that stop reading input).

To accommodate out of band signaling. TCP allows the sender to specify data as
urgent, meaning that the receiving program should be notified of its arrival as quickly
as possible, regardless of its position in the stream. The protocol specifies that when
urgent data is found, the receiving TCP should notify whatever application program is
associated with the connection to go into ‘‘urgent mode.”” After all urgent data has
been consumed, TCP tells the application program to return to normal operation.

The exact details of how TCP informs the application program about urgent data
depend on the computer’s operating system, of course. The mechanism used to mark
urgent data when transmitting it in a segment cori-’sts of the URG code bit and the UR-
GENT POINTER field. When the URG bit is set, the urgent pointer specifies the posi-
tion in the segment where urgent data ends.

Sec. 13.13 Maximum Segment Size Option 223
13.13 Maximum Segment Size Option

Not all segments sent across a connection will be of the same size. However, both
ends need to agree on a maximum segment they will transfer. TCP software uses the
OPTIONS field to negotiate with the TCP software at the other end of the connection:
one of the options allows TCP software to specity the maximum segment size (MSS)
that it is willing to receive. For exumple, when an embedded system that only has a
few hundred bytes of buffer space connects to a large supercomputer, it can negotiate an
MSS that restricts segments so they fit in the buffer. It is especially important for com-
puters connected by high-speed local area networks to choose a maximum segment size
that fills packets or they will not make good use of the bundwidth. Theretore. if the
two endpoints lie on the same physical network, TCP usually computes a maximum
segment size such that the resulting IP datagrams will match the network MTU. If the
endpoints do not lie on the same physical network. they can attempt to discover the
minimum MTU along the path between them. or choose a maximum segment size of
536 (the default size of an IP datagram, 576. minus the standard size of IP and TCP
headers).

In a general internet environment, choosing a good maximum segment size can be
difficult because performance can be poor for either extremely large segment sizes or
extremely small sizes. On one hand, when the segment size is small. network utiliza-
tion remains low. To see why, recall that TCP segments travel encapsulated in IP da-
tagrams which are encapsulated in physical network frames. Thus, each segment has at
least 40 octets of TCP and IP headers in addition to the data. Therefore. datagrams car-
rying only one octet of data use at most 1/41 of the underlying network bandwidth for
user data; in practice, minimum interpacket gaps and network hardware framing bits
make the ratio even smaller.

On the other hand, extremely large segment sizes can also produce poor perfor-
mance. Large segments result in large IP datagrams. When such datagrams travel
across a network with small MTU, IP must fragment them. Unlike a TCP segment, a
fragment cannot be acknowledged or retransmitted independently; all fragments must
arrive or the entire datagram must be retransmitted. Because the probability of losing a
given fragment is nonzero, increasing segment size above the fragmentation threshold
decreases the probability the datagram will arrive, which decreases throughput.

In theory, the optimum segment size, S, occurs when the [P datagrams carrying the
segments are as large as possible without requiring fragmentation anywhere along the
path from the source to the destination. In practice, finding S is difficult for several rea-
sons. First, most implementations of TCP do not include a mechanism for doing so.
Second, because routers in an internet can change routes dynamically. the path da-
tagrams follow between a pair of communicating computers can change dynamically
and so can the size at which datagrams must be fragmented. Third, the optimum size
depends on lower-level protocol headers (e.g., the segment size must be reduced to ac-
commodate IP options). Research on the problem of finding an optimal segment size
continues.

+To discover the path MTU, a sender probes the path by sending datagramms with the 1P do not fragment
bit set. It then decreases the size if [CMP error messages report that fragmentation was required.

224 Reliable Stream Transport Service (TCP) Chap. 13

13.14 TCP Checksum Computation

The CHECKSUM field in the TCP header contains a 16-bit integer checksum used
to verify the integrity of the data as well as the TCP header. To compute the checksum,
TCP software on the sending machine follows a procedure like the one described in
Chapter 12 for UDP. It prepends a pseudo header to the segment, appends enough zero
bits to make the segment a multiple of 16 bits, and computes the 16-bit checksum over
the entire result. TCP does not count the pseudo header or padding in the segment
length, . or does it transmit them. Also, it assumes the checksum field itself is zero for
purposes of the checksum computation. As with other checksums, TCP uses 16-bit ar-
ithmetic and takes the one’s complement of the one’s complement sum. At the receiv-
ing site, TCP software performs the same computation to verify that the segment arrived
intact.

The purpose of using a pseudo header is exactly the same as in UDP. It allows the
receiver to verify that the segment has reached its correct destination, which includes
both a host IP address as well as a protocol port number. Both the source and destina-
tion IP addresses are important to TCP because it must use them to identify a connec-
tion to which the segment belongs. Therefore, whenever a datagram arrives carrying a
TCP segment, IP must pass to TCP the source and destination IP addresses from the da-
tagram as well as the segment itself. Figure 13.9 shows the format of the pseudo
header used in the checksum computation.

0 8 16 31
SOURCE IP ADDRESS
DESTINATION IP ADDRESS
ZERO PROTOCOL TCP LENGTH

Figure 13.9 The format of the pseudo header used in TCP checksum compu-
tations. At the receiving site, this information is extracted from
the IP datagram that carried the segment.

The sending TCP assigns field PROTOCOL the value that the underlying delivery
system will use in its protocol type field. For IP datagrams carrying TCP, the value is
6. The TCP LENGTH field specifies the total length of the TCP segment including the
TCP header. At the receiving end, information used in the pseudo header is extracted
from the IP datagram that carried the segment and included in the checksum computa-
tion to verify that the segment arrived at the correct destination intact.

